Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(3): H705-H714, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241007

RESUMO

Pentoxifylline is a nonselective phosphodiesterase inhibitor used for the treatment of peripheral artery disease. Pentoxifylline acts through cyclic adenosine monophosphate, thereby enhancing red blood cell deformability, causing vasodilation and decreasing inflammation, and potentially stimulating ventilation. We conducted a double-blind, placebo-controlled, crossover, counter-balanced study to test the hypothesis that pentoxifylline could lower blood viscosity, enhance cerebral blood flow, and decrease pulmonary artery pressure in lowlanders following 11-14 days at 3,800 m. Participants (6 males/10 females; age, 27 ± 4 yr old) received either a placebo or 400 mg of pentoxifylline orally the night before and again 2 h before testing. We assessed arterial blood gases, venous hemorheology (blood viscosity, red blood cell deformability, and aggregation), and inflammation (TNF-α) in room air (end-tidal oxygen partial pressure, ∼52 mmHg). Global cerebral blood flow (gCBF), ventilation, and pulmonary artery systolic pressure (PASP) were measured in room air and again after 8-10 min of isocapnic hypoxia (end-tidal oxygen partial pressure, 40 mmHg). Pentoxifylline did not alter arterial blood gases, TNF-α, or hemorheology compared with placebo. Pentoxifylline did not affect gCBF or ventilation during room air or isocapnic hypoxia compared with placebo. However, in females, PASP was reduced with pentoxifylline during room air (placebo, 19 ± 3; pentoxifylline, 16 ± 3 mmHg; P = 0.021) and isocapnic hypoxia (placebo, 22 ± 5; pentoxifylline, 20 ± 4 mmHg; P = 0.029), but not in males. Acute pentoxifylline administration in lowlanders at 3,800 m had no impact on arterial blood gases, hemorheology, inflammation, gCBF, or ventilation. Unexpectedly, however, pentoxifylline reduced PASP in female participants, indicating a potential effect of sex on the pulmonary vascular responses to pentoxifylline.NEW & NOTEWORTHY We conducted a double-blind, placebo-controlled study on the rheological, cardiorespiratory and cerebrovascular effects of acute pentoxifylline in healthy lowlanders after 11-14 days at 3,800 m. Although red blood cell deformability was reduced and blood viscosity increased compared with low altitude, acute pentoxifylline administration had no impact on arterial blood gases, hemorheology, inflammation, cerebral blood flow, or ventilation. Pentoxifylline decreased pulmonary artery systolic pressure in female, but not male, participants.


Assuntos
Pentoxifilina , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Hemorreologia , Fator de Necrose Tumoral alfa , Hipóxia , Oxigênio , Aclimatação/fisiologia , Inflamação/complicações , Gases , Circulação Cerebrovascular , Altitude
3.
J Physiol ; 600(6): 1385-1403, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904229

RESUMO

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Assuntos
Dióxido de Carbono , Óxido Nítrico , Circulação Cerebrovascular/fisiologia , Dilatação , Inibidores Enzimáticos/farmacologia , Humanos , Óxido Nítrico Sintase , Dióxido de Nitrogênio , ômega-N-Metilarginina/farmacologia
4.
J Physiol ; 599(21): 4763-4778, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605026

RESUMO

Adults with obesity are at increased risk of neurocognitive impairments, partly as a result of reduced cerebral blood flow and brain-derived neurotrophic factor (BDNF). Ketone supplements containing ß-hydroxybutyrate (ß-OHB) are a purported therapeutic strategy for improving brain health in at-risk populations. We tested the hypothesis that short-term ß-OHB supplementation will elevate cerebral blood flow and BDNF, as well as improve cognition in adults with obesity. In a placebo-controlled double-blind, cross-over design, 14 adults with obesity (10 females; aged 56 ± 12 years; body mass index = 33.8 ± 6.9 kg m-2 ) consumed 30 mL (12 g) of ß-OHB or placebo thrice-daily for 14 days. Blood flow (Q) and cerebrovascular conductance (CVC) were measured in the common carotid (CCA), internal carotid (ICA) and vertebral (VA) arteries by duplex ultrasound. BDNF was measured by an enzyme-linked immunosorbent assay. Cognition was assessed by the digit-symbol substitution (DSST), Stroop and task-switching tests. Following 14 days of ketone supplementation, we observed significant improvements in cerebrovascular outcomes including QCCA (+12%), QVA (+11%), VACVC (+12%) and VA shear rate (+10%). DSST performance significantly improved following ketone supplementation (+2.7 correct responses) and improved DSST performance was positively associated improvements in cerebrovascular outcomes including QCCA , CCACVC , QVA and VACVC . By contrast to one hypothesis, ß-OHB did not impact fasting serum and plasma BDNF. ß-OHB supplementation improved cognition in adults with obesity, which may be partly facilitated by improvements in cerebral blood flow. ß-OHB supplementation was well-tolerated and appears to be safe for cerebrovascular health, suggesting potential therapeutic benefits of ß-OHB in a population at risk of neurocognitive impairment. KEY POINTS: People with obesity are at increased risk of neurocognitive dysfunction, partly as a result of -induced reductions in cerebral blood flow (CBF) and brain-derived neurotrophic factor (BDNF). Ketone supplements containing ß-hydroxybutyrate (ß-OHB) reduce postprandial hyperglycaemia, which may increase CBF and BDNF, thereby protecting against obesity-related cognitive dysfunction. We show for the first time that 14 days of thrice-daily ß-OHB supplementation improves aspects of cognition and increases cerebrovascular flow, conductance and shear rate in the extracranial arteries of adults with obesity. Our preliminary data indicate a significant positive relationship between elevated CBF and improved cognition following ß-OHB supplementation. This trial provides a foundation for the potential non-pharmacological therapeutic application of ß-OHB supplementation in patient groups at risk of hyperglycaemic cerebrovascular disease and cognitive dysfunction.


Assuntos
Circulação Cerebrovascular , Cetonas , Adulto , Cognição , Estudos Cross-Over , Suplementos Nutricionais , Feminino , Humanos , Obesidade/complicações
5.
J Physiol ; 599(15): 3663-3676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107079

RESUMO

KEY POINTS: We investigated the influence of arterial PCO2 ( PaCO2 ) with and without acute experimental metabolic alkalosis on neurovascular coupling (NVC). We assessed stepwise iso-oxic alterations in PaCO2 prior to and following intravenous NaHCO3 to acutely elevate arterial pH and [HCO3- ]. The NVC response was not altered following NaHCO3 between stepwise PaCO2 stages; therefore, NVC is acutely mediated by PaCO2 rather than the prevailing arterial [H+ ]/pH. The NVC response was attenuated by 27-38% with -10 mmHg PaCO2 and the absolute peak change was reduced by -19% with +10 mmHg PaCO2 irrespective of acutely elevated arterial pH/[HCO3- ]. The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively) likely indicating an influence of resting cerebrovascular tone on NVC responsiveness. ABSTRACT: Elevations in cerebral metabolism necessitate appropriate coordinated and localized increases in cerebral blood flow (i.e. neurovascular coupling; NVC). Recent pre-clinical work indicates that arterial PCO2 ( PaCO2 ) mediates NVC independently of arterial/extracellular pH; this has yet to be experimentally tested in humans. The goal of this study was to investigate the hypotheses that: (1) the NVC response would be unaffected by acute experimentally elevated arterial pH; rather, PaCO2 would regulate any changes in NVC; and (2) stepwise respiratory alkalosis and acidosis would each progressively reduce the NVC response. Ten healthy males completed a standardized visual stimulus-evoked NVC test during matched stepwise iso-oxic alterations in PaCO2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following intravenous NaHCO3 (8.4%, 50 mEq/50 ml) that elevated arterial pH (7.406 ± 0.019 vs. 7.457 ± 0.029; P < 0.001) and [HCO3- ] (26.2 ± 1.5 vs. 29.3 ± 0.9 mEq/l; P < 0.001). Although the NVC response was collectively attenuated by 27-38% with -10 mmHg PaCO2 (stage post hoc: all P < 0.05), this response was unaltered following NaHCO3 (all P > 0.05) irrespective of the higher pH (P = 0.002) at each matched stage of PaCO2 (P = 0.417). The absolute peak change was reduced by -19 ± 41% with +10 mmHg PaCO2 irrespective of acutely elevated arterial pH/[HCO3- ] (stage post hoc: P = 0.022). The NVC kinetics (i.e. time to peak) were markedly slower with hypercapnia versus hypocapnia (24 ± 5 vs. 7 ± 5 s, respectively; stage effect: P < 0.001). Overall, these findings indicate that temporal patterns in NVC are acutely regulated by PaCO2 rather than arterial pH per se in the setting of acute metabolic alkalosis in humans.


Assuntos
Dióxido de Carbono , Acoplamento Neurovascular , Circulação Cerebrovascular , Humanos , Concentração de Íons de Hidrogênio , Hipocapnia , Cinética , Masculino
6.
Exp Physiol ; 106(4): 1120-1133, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559974

RESUMO

NEW FINDINGS: What is the central question of this study? How does deep breath-hold diving impact cardiopulmonary function, both acutely and over the subsequent 2.5 hours post-dive? What is the main finding and its importance? Breath-hold diving, to depths below residual volume, is associated with acute impairments in pulmonary gas exchange, which typically resolve within 2.5 hours. These data provide new insight into the behaviour of the lungs and pulmonary vasculature following deep diving. ABSTRACT: Breath-hold diving involves highly integrative and extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. Over two diving training camps (Study 1 and 2), 25 breath-hold divers (recreational to world-champion) performed 66 dives to 57 ± 20 m (range: 18-117 m). Using the deepest dive from each diver, temporal changes in cardiopulmonary function were assessed using non-invasive pulmonary gas exchange (indexed via the O2 deficit), ultrasound B-line scores, lung compliance and pulmonary haemodynamics at baseline and following the dive. Hydrostatically induced lung compression was quantified in Study 2, using spirometry and lung volume measurement, enabling each dive to be categorized by its residual volume (RV)-equivalent depth. From both studies, pulmonary gas exchange inefficiency - defined as an increase in O2 deficit - was related to the depth of the dive (r2  = 0.345; P < 0.001), with dives associated with lung squeeze symptoms exhibiting the greatest deficits. In Study 1, although B-lines doubled from baseline (P = 0.027), cardiac output and pulmonary artery systolic pressure were unchanged post-dive. In Study 2, dives with lung compression to ≤RV had higher O2 deficits at 9 min, compared to dives that did not exceed RV (24 ± 25 vs. 5 ± 8 mmHg; P = 0.021). The physiological significance of a small increase in estimated lung compliance post-dive (via decreased and increased/unaltered airway resistance and reactance, respectively) remains equivocal. Following deep dives, the current study highlights an integrated link between hydrostatically induced lung compression and transient impairments in pulmonary gas exchange efficiency.


Assuntos
Suspensão da Respiração , Troca Gasosa Pulmonar , Débito Cardíaco , Volume Residual , Espirometria
7.
J Physiol ; 599(5): 1439-1457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404065

RESUMO

KEY POINTS: We investigated the influence of arterial PCO2 ( PaCO2 ) with and without acutely elevated arterial pH and bicarbonate ([HCO3- ]) on cerebral blood flow (CBF) regulation in the internal carotid artery and vertebral artery. We assessed stepwise iso-oxic alterations in PaCO2 (i.e. cerebrovascular CO2 reactivity) prior to and following i.v. sodium bicarbonate infusion (NaHCO3- ) to acutely elevate arterial pH and [HCO3- ]. Total CBF was unchanged irrespective of a higher arterial pH at each matched stage of PaCO2 , indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. The cerebrovascular responses to changes in arterial H+ /pH were altered in keeping with the altered relationship between PaCO2 and H+ /pH following NaHCO3- infusion (i.e. changes in buffering capacity). Total CBF was ∼7% higher following NaHCO3- infusion during isocapnic breathing providing initial evidence for a direct vasodilatory influence of HCO3- independent of PaCO2 levels. ABSTRACT: Cerebral blood flow (CBF) regulation is dependent on the integrative relationship between arterial PCO2 ( PaCO2 ), pH and cerebrovascular tone; however, pre-clinical studies indicate that intrinsic sensitivity to pH, independent of changes in PaCO2 or intravascular bicarbonate ([HCO3- ]), principally influences cerebrovascular tone. Eleven healthy males completed a standardized cerebrovascular CO2 reactivity (CVR) test utilizing radial artery catheterization and Duplex ultrasound (CBF); consisting of matched stepwise iso-oxic alterations in PaCO2 (hypocapnia: -5, -10 mmHg; hypercapnia: +5, +10 mmHg) prior to and following i.v. sodium bicarbonate (NaHCO3- ; 8.4%, 50 mEq 50 mL-1 ) to elevate pH (7.408 ± 0.020 vs. 7.461 ± 0.030; P < 0.001) and [HCO3- ] (26.1 ± 1.4 vs. 29.3 ± 0.9 mEq L-1 ; P < 0.001). Absolute CBF was not different at each stage of CO2 reactivity (P = 0.629) following NaHCO3- , irrespective of a higher pH (P < 0.001) at each matched stage of PaCO2 (P = 0.927). Neither hypocapnic (3.44 ± 0.92 vs. 3.44 ± 1.05% per mmHg PaCO2 ; P = 0.499), nor hypercapnic (7.45 ± 1.85 vs. 6.37 ± 2.23% per mmHg PaCO2 ; P = 0.151) reactivity to PaCO2 were altered pre- to post-NaHCO3- . When indexed against arterial [H+ ], the relative hypocapnic CVR was higher (P = 0.019) and hypercapnic CVR was lower (P = 0.025) following NaHCO3- , respectively. These changes in reactivity to [H+ ] were, however, explained by alterations in buffering between PaCO2 and arterial H+ /pH consequent to NaHCO3- . Lastly, CBF was higher (688 ± 105 vs. 732 ± 89 mL min-1 , 7% ± 12%; P = 0.047) following NaHCO3- during isocapnic breathing providing support for a direct influence of HCO3- on cerebrovascular tone independent of PaCO2 . These data indicate that in the setting of acute metabolic alkalosis, CBF is regulated by PaCO2 rather than arterial pH.


Assuntos
Alcalose , Dióxido de Carbono , Bicarbonatos , Circulação Cerebrovascular , Humanos , Concentração de Íons de Hidrogênio , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA