Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Hosp Palliat Care ; : 10499091241268423, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39157978

RESUMO

BACKGROUND: Hepatocellular carcinoma is a burdensome form of liver cancer with an increasing global prevalence. Emerging evidence has shown that early palliative care introduction at diagnosis of any life-limiting illness improves patient and carer outcomes. Despite this, patients with hepatocellular carcinoma usually receive palliative care late. These patients are important stakeholders in the provision of palliative care, but their perceived barriers regarding its delivery are poorly defined. AIM: This pilot study aimed to identify the barriers perceived by patients to integrating palliative care into the hepatocellular carcinoma treatment algorithm. DESIGN: Patients living with hepatocellular carcinoma undertook semi-structured interviews about their perceptions of palliative care. We compared these perceptions before and after providing a brief explanation of palliative care. Interview data was inductively coded in NVivo 12 (2018) and thematically analysed. RESULTS: Twenty-one patients were interviewed. 16 perceived palliative care to mean end-of-life therapy, and nine participants had no prior knowledge of palliative care. After hearing a definition of palliative care, 17 participants reported changed positive attitudes. Seven participants supported a name change, including four participants who continued to reject palliative care following the explanation due to the negative stigma associated with the term 'palliative care'. CONCLUSION: There is significant misperception about the purpose of palliative care among patients with hepatocellular carcinoma, constituting a barrier to early integration. This can be feasibly addressed with a two-folded educational and renaming initiative to dispel patient misconceptions regarding palliative care. Effective strategies to achieve this should be developed and tested with relevant stakeholders, particularly patients.

2.
J Dev Biol ; 11(2)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218814

RESUMO

Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.

3.
J Gastroenterol Hepatol ; 38(7): 1047-1055, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36634200

RESUMO

Hepatocellular carcinoma (HCC) is a deadly and burdensome form of liver cancer with an increasing global prevalence. Its course is unpredictable as it frequently occurs in the context of underlying end-stage liver disease, and the associated symptoms and adverse effects of treatment cause severe suffering for patients. Palliative care (PC) is a medical specialty that addresses the physical, emotional, and spiritual needs of patients and their carers in the context of life-limiting illness. In other cancers, a growing body of evidence has demonstrated that the early introduction of PC at diagnosis improves patient and carer outcomes. Despite this, the integration of palliative care at the diagnosis of HCC remains suboptimal, as patients usually receive PC only at the very terminal phase of their disease, even when diagnosed early. Significant barriers to the uptake of palliative care in the treatment algorithm of hepatocellular carcinoma fall under four main themes: data limitations, disease, clinician, and patient factors. Barriers relating to data limitations mainly encapsulated the risk of bias inherent in published work in the field of PC. Clinician-reported barriers related to negative attitudes towards PC and a lack of time for PC discussions. Barriers related to the disease align with prognostic uncertainty due to the unpredictable course of HCC. Significantly, there exists a paucity of evidence exploring patient-perceived barriers to timely PC implementation in HCC. Given that patients are often the underrepresented stakeholder in the delivery of PC, future research should explore the patient perspective in adequately designed qualitative studies as the first step.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Neoplasias Hepáticas , Humanos , Cuidados Paliativos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Doença Hepática Terminal/terapia
4.
Biology (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440004

RESUMO

B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development.

5.
iScience ; 24(3): 102140, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665559

RESUMO

Tobacco smoking is a risk factor for several human diseases. Conversely, smoking also reduces the prevalence of Parkinson's disease, whose hallmark is degeneration of substantia nigra dopaminergic neurons (DNs). We use C. elegans as a model to investigate whether tobacco-derived nicotine activates nicotinic acetylcholine receptors (nAChRs) to selectively protect DNs. Using this model, we demonstrate conserved functions of DN-expressed nAChRs. We find that DOP-2, a D3-receptor homolog; MCU-1, a mitochondrial calcium uniporter; PINK-1 (PTEN-induced kinase 1); and PDR-1 (Parkin) are required for nicotine-mediated protection of DNs. Together, our results support involvement of a calcium-modulated, mitochondrial stress-activated PINK1/Parkin-dependent pathway in nicotine-induced neuroprotection. This suggests that nicotine-selective protection of substantia nigra DNs is due to the confluence of two factors: first, their unique vulnerability to mitochondrial stress, which is mitigated by increased mitochondrial quality control due to PINK1 activation, and second, their specific expression of D3-receptors.

6.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319748

RESUMO

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and α-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized α-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli , Variação Genética/genética , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Proteína FUS de Ligação a RNA/metabolismo , Saccharomyces cerevisiae
7.
J Manag Care Spec Pharm ; 26(12): 1517-1528, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33251993

RESUMO

BACKGROUND: Multiple barriers exist for appropriate use of the proprotein convertase subtilisin/kexin type 9 enzyme inhibitors (PCSK9i) in patients with atherosclerotic cardiovascular disease (ASCVD) or familial hypercholesterolemia (FH) with inadequately controlled hypercholesterolemia despite standard therapies. Among these barriers, high payer rejection rates and inadequate prior authorization (PA) documentation by providers hinder optimal use of PCSK9i. OBJECTIVES: To (a) identify and discuss provider and payer discordances on barriers to authorization and use of PCSK9i based on clinical and real-world evidence and (b) align understanding and application of clinical, cost, safety, and efficacy data of PCSK9i. METHODS: Local groups of 3 payers and 3 providers met in 6 separate locations across the United States through a collaborative project of AMCP and PRIME Education. Responses to selected pre- and postmeeting survey questions measured changes in attitudes and beliefs regarding treatment barriers, lipid thresholds for considering PCSK9i therapy, and tactics for improving PA processes. Statistical analysis of inter- and intragroup changes in attitudes were performed by Cox proportional hazards test and Fisher's exact test for < 5 variables. RESULTS: The majority of providers and payers (67%-78%) agreed that high patient copayments and inadequate PA documentation were significant barriers to PCSK9i usage. However, payers and providers differed on beliefs that current evidence does not support PCSK9i cost-effectiveness (6% providers, 56% payers; P = 0.003) and that PA presents excessive administrative burden (72% providers, 44% payers; P = 0.09) Average increases pre- to postmeeting were noted in provider beliefs that properly documented PA forms expedite access to PCSK9i (22%-50% increase) and current authorization criteria accurately distinguish patients who benefit most from PCSK9i (6%-22%). Payers decreased in their belief that current authorization criteria accurately distinguish benefiting patients (72%-50%). Providers and payers increased in their belief that PCSK9i are cost-effective (44%-61% and 28%-50%, respectively) and were more willing to consider PCSK9i at the low-density lipoprotein cholesterol threshold of > 70 mg/dL for patients with ASCVD (78%-83% and 44%-67%, respectively) or FH (22%-39% and 22%-33%). Payers were more agreeable to less stringent PA requirements for patients with FH (33%-72%, P = 0.019) and need for standardized PA requirements (50%-83%, P = 0.034); these considerations remained high (89%) among providers after the meeting. Most participants supported educational programs for patient treatment adherence (83%) and physician/staff PA processes (83%-94%). CONCLUSIONS: Provider and payer representatives in 6 distinct geographic locations provided recommendations to improve quality of care in patients eligible for PCSK9i. Participants also provided tactical recommendations for streamlining PA documentation processes and improving awareness of PCSK9i cost-effectiveness and clinical efficacy. The majority of participants supported development of universal, standardized patient eligibility criteria and PA forms. DISCLOSURES: The study reported in this article was part of a continuing education program funded by an independent educational grant awarded by Sanofi US and Regeneron Pharmaceuticals to PRIME Education. The grantor had no role in the study design, execution, analysis, or reporting. AMCP received grant funding from PRIME to assist in the study, as well as in writing the manuscript. McCormick, Bhatt, Bays, Taub, Caldwell, Guerin, Steinhoff, and Ahmad received an honorarium from PRIME for serving as faculty for the continuing education program. McCormick, Bhatt, Bays, Taub, Caldwell, Guerin, Steinhoff, and Ahmad were involved as participants in the study. Bhatt discloses the following relationships: Advisory board: Cardax, CellProthera, Cereno Scientific, Elsevier Practice Update Cardiology, Level Ex, Medscape Cardiology, PhaseBio, PLx Pharma, Regado Biosciences; Board of directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data monitoring committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Contego Medical (Chair, PERFORMANCE 2), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial, funded by Ferring Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), K2P (Co-Chair, interdisciplinary curriculum), Level Ex, Medtelligence/ReachMD (CME steering committees), MJH Life Sciences, Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research funding: Abbott, Afimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Idorsia, Ironwood, Ischemix, Lexicon, Lilly, Medtronic, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald's Heart Disease); Site co-investigator: Biotronik, Boston Scientific, CSI, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology; Unfunded research: FlowCo, Merck, Novo Nordisk, Takeda. Bays' research site has received research grants from 89Bio, Acasti, Akcea, Allergan, Alon Medtech/Epitomee, Amarin, Amgen, AstraZeneca, Axsome, Boehringer Ingelheim, Civi, Eli Lilly, Esperion, Evidera, Gan and Lee, Home Access, Janssen, Johnson and Johnson, Lexicon, Matinas, Merck, Metavant, Novartis, Novo Nordisk, Pfizer, Regeneron, Sanofi, Selecta, TIMI, and Urovant. Bays has served as a consultant/advisor for 89Bio, Amarin, Esperion, Matinas, and Gelesis, and speaker for Esperion. McCormick, Caldwell, Guerin, Ahmad, Singh, Moreo, Carter, Heggen, and Sapir have nothing to disclose.


Assuntos
Anticolesterolemiantes/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Inibidores de PCSK9 , Anticolesterolemiantes/efeitos adversos , Anticolesterolemiantes/economia , Aterosclerose/tratamento farmacológico , Aterosclerose/economia , Doenças Cardiovasculares/economia , Análise Custo-Benefício , Documentação , Custos de Medicamentos , Grupos Focais , Humanos , Hiperlipoproteinemia Tipo II/economia , Adesão à Medicação , Qualidade da Assistência à Saúde , Inquéritos e Questionários , Resultado do Tratamento , Estados Unidos
8.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261893

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dinâmica Mitocondrial , Doença de Parkinson/genética , Tolerância a Radiação/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos da radiação , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Mitofagia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversos
9.
Cell Death Dis ; 9(5): 555, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29748634

RESUMO

Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.


Assuntos
Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Interação Gene-Ambiente , Mitocôndrias , Doença de Parkinson , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
10.
Hum Mol Genet ; 27(9): 1514-1532, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452354

RESUMO

We probed the role of alpha-synuclein (α-syn) in modulating sorting nexin 3 (Snx3)-retromer-mediated recycling of iron transporters in Saccharomyces cerevisiae and Caenorhabditis elegans. In yeast, the membrane-bound heterodimer Fet3/Ftr1 is the high affinity iron importer. Fet3 is a membrane-bound multicopper ferroxidase, whose ferroxidase domain is orthologous to human ceruloplasmin (Cp), that oxidizes external Fe+2 to Fe+3; the Fe+3 ions then channel through the Ftr1 permease into the cell. When the concentration of external iron is low (<1 µM), Fet3/Ftr1 is maintained on the plasma membrane by retrograde endocytic-recycling; whereas, when the concentration of external iron is high (>10 µM), Fet3/Ftr1 is endocytosed and shunted to the vacuole for degradation. We discovered that α-syn expression phenocopies the high iron condition: under the low iron condition (<1 µM), α-syn inhibits Snx3-retromer-mediated recycling of Fet3/Ftr1 and instead shunts Fet3/Ftr1 into the multivesicular body pathway to the vacuole. α-Syn inhibits recycling by blocking the association of Snx3-mCherry molecules with endocytic vesicles, possibly by interfering with the binding of Snx3 to phosphatidylinositol-3-monophosphate. In C. elegans, transgenic worms expressing α-syn exhibit an age-dependent degeneration of dopaminergic neurons that is partially rescued by the iron chelator desferoxamine. This implies that α-syn-expressing dopaminergic neurons are susceptible to changes in iron neurotoxicity with age, whereby excess iron enhances α-syn-induced neurodegeneration. In vivo genetic analysis indicates that α-syn dysregulates iron homeostasis in worm dopaminergic neurons, possibly by inhibiting SNX-3-mediated recycling of a membrane-bound ortholog of Cp (F21D5.3), the iron exporter ferroportin (FPN1.1), or both.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Doença de Parkinson/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animais , Proteínas de Transporte/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Modelos Animais de Doenças , Endocitose/genética , Endocitose/fisiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/genética
11.
Mol Neurobiol ; 55(9): 7533-7552, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29429047

RESUMO

Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Neurônios Dopaminérgicos/enzimologia , alfa-Sinucleína/toxicidade , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Amiloide/metabolismo , Animais , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dopamina/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Mesencéfalo/patologia , Mutação/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroproteção/efeitos dos fármacos , Doença de Parkinson/patologia
12.
Health Psychol ; 36(3): 264-269, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27819461

RESUMO

OBJECTIVE: Cognitive-behavioral models of chronic fatigue syndrome (CFS) propose that patients respond to symptoms with 2 predominant activity patterns-activity limitation and all-or-nothing behaviors-both of which may contribute to illness persistence. The current study investigated whether activity patterns occurred at the same time as, or followed on from, patient symptom experience and affect. METHOD: Twenty-three adults with CFS were recruited from U.K. CFS services. Experience sampling methodology (ESM) was used to assess fluctuations in patient symptom experience, affect, and activity management patterns over 10 assessments per day for a total of 6 days. Assessments were conducted within patients' daily life and were delivered through an app on touchscreen Android mobile phones. Multilevel model analyses were conducted to examine the role of self-reported patient fatigue, pain, and affect as predictors of change in activity patterns at the same and subsequent assessment. RESULTS: Current experience of fatigue-related symptoms and pain predicted higher patient activity limitation at the current and subsequent assessments whereas subjective wellness predicted higher all-or-nothing behavior at both times. Current pain predicted less all-or-nothing behavior at the subsequent assessment. In contrast to hypotheses, current positive affect was predictive of current activity limitation whereas current negative affect was predictive of current all-or-nothing behavior. Both activity patterns varied at the momentary level. CONCLUSIONS: Patient symptom experiences appear to be driving patient activity management patterns in line with the cognitive-behavioral model of CFS. ESM offers a useful method for examining multiple interacting variables within the context of patients' daily life. (PsycINFO Database Record


Assuntos
Terapia Cognitivo-Comportamental/métodos , Avaliação Momentânea Ecológica , Síndrome de Fadiga Crônica/psicologia , Síndrome de Fadiga Crônica/terapia , Adolescente , Adulto , Síndrome de Fadiga Crônica/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multinível , Medição da Dor/métodos , Medição da Dor/psicologia , Autorrelato , Reino Unido/epidemiologia , Adulto Jovem
13.
Sci Rep ; 6: 22566, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936423

RESUMO

Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson's disease (PD), which is widely accepted to have both genetic and environmental factors.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Microbiologia do Solo , Alabama , Animais , Toxinas Bacterianas/toxicidade , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/microbiologia , Transtornos Parkinsonianos/patologia , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
14.
Neurosci Lett ; 584: 23-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25304539

RESUMO

It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased protein misfolding of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Fenazinas/toxicidade , Piocianina/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Genes Reporter , Estresse Oxidativo , Peptídeos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo
15.
Cell Metab ; 20(1): 145-57, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882066

RESUMO

Neurodegenerative diseases represent an increasing burden in our aging society, yet the underlying metabolic factors influencing onset and progression remain poorly defined. The relationship between impaired IGF-1/insulin-like signaling (IIS) and lifespan extension represents an opportunity to investigate the interface of metabolism with age-associated neurodegeneration. Using data sets of established DAF-2/IIS-signaling components in Caenorhabditis elegans, we conducted systematic RNAi screens in worms to select for daf-2-associated genetic modifiers of α-synuclein misfolding and dopaminergic neurodegeneration, two clinical hallmarks of Parkinson's disease. An outcome of this strategy was the identification of GPI-1/GPI, an enzyme in glucose metabolism, as a daf-2-regulated modifier that acts independent of the downstream cytoprotective transcription factor DAF-16/FOXO to modulate neuroprotection. Subsequent mechanistic analyses using Drosophila and mouse primary neuron cultures further validated the conserved nature of GPI neuroprotection from α-synuclein proteotoxicity. Collectively, these results support glucose metabolism as a conserved functional node at the intersection of proteostasis and neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Envelhecimento , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glicólise , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
16.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439375

RESUMO

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagênese , Neurônios/citologia , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Dobramento de Proteína , Estrutura Terciária de Proteína , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Deficiências na Proteostase/terapia , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
17.
Antioxid Redox Signal ; 20(2): 217-35, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23641861

RESUMO

AIMS: Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. RESULTS: We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human ß-amyloid peptide (Aß), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aß and α-syn peptides in these worm models. INNOVATION: We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aß, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. CONCLUSION: Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Doenças Neurodegenerativas/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Autofagia/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Degradação Associada com o Retículo Endoplasmático , Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma , Proteólise , Interferência de RNA , alfa-Sinucleína/metabolismo
18.
Mov Disord ; 28(6): 725-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23580333

RESUMO

Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function.


Assuntos
Doença de Gaucher/patologia , Lisossomos/patologia , Doença de Parkinson/patologia , Animais , Autofagia , Doença de Gaucher/complicações , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisossomos/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons/genética , Transdução de Sinais/fisiologia
19.
Hum Mol Genet ; 21(17): 3785-94, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22645275

RESUMO

Lysosomes are responsible for degradation and recycling of bulky cell material, including accumulated misfolded proteins and dysfunctional organelles. Increasing evidence implicates lysosomal dysfunction in several neurodegenerative disorders, including Parkinson's disease and related synucleinopathies, which are characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies. Studies of lysosomal proteins linked to neurodegenerative disorders present an opportunity to uncover specific molecular mechanisms and pathways that contribute to neurodegeneration. Loss-of-function mutations in a lysosomal protein, ATP13A2 (PARK9), cause Kufor-Rakeb syndrome that is characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While loss of ATP13A2 function plays a role in α-syn misfolding and toxicity, the normal function of ATP13A2 in the brain remains largely unknown. Here, we performed a screen to identify ATP13A2 interacting partners, as a first step toward elucidating its function. Utilizing a split-ubiquitin membrane yeast two-hybrid system that was developed to identify interacting partners of full-length integral membrane proteins, we identified 43 novel interactors that primarily implicate ATP13A2 in cellular processes such as endoplasmic reticulum (ER) translocation, ER-to-Golgi trafficking and vesicular transport and fusion. We showed that a subset of these interactors modified α-syn aggregation and α-syn-mediated degeneration of dopaminergic neurons in Caenorhabditis elegans, further suggesting that ATP13A2 and α-syn are functionally linked in neurodegeneration. These results implicate ATP13A2 in vesicular trafficking and provide a platform for further studies of ATP13A2 in neurodegeneration.


Assuntos
Dobramento de Proteína/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Ligação Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Técnicas do Sistema de Duplo-Híbrido , alfa-Sinucleína/química
20.
J Neurosci ; 32(6): 2142-53, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323726

RESUMO

Disruption of the lysosomal system has emerged as a key cellular pathway in the neurotoxicity of α-synuclein (α-syn) and the progression of Parkinson's disease (PD). A large-scale RNA interference (RNAi) screen using Caenorhabditis elegans identified VPS-41, a multidomain protein involved in lysosomal protein trafficking, as a modifier of α-syn accumulation and dopaminergic neuron degeneration (Hamamichi et al., 2008). Previous studies have shown a conserved neuroprotective function of human VPS41 (hVPS41) against PD-relevant toxins in mammalian cells and C. elegans neurons (Ruan et al., 2010). Here, we report that both the AP-3 (heterotetrameric adaptor protein complex) interaction domain and clathrin heavy-chain repeat domain are required for protecting C. elegans dopaminergic neurons from α-syn-induced neurodegeneration, as well as to prevent α-syn inclusion formation in an H4 human neuroglioma cell model. Using mutant C. elegans and neuron-specific RNAi, we revealed that hVPS41 requires both a functional AP-3 (heterotetrameric adaptor protein complex) and HOPS (homotypic fusion and vacuole protein sorting)-tethering complex to elicit neuroprotection. Interestingly, two nonsynonymous single-nucleotide polymorphisms found within the AP-3 interacting domain of hVPS41 attenuated the neuroprotective property, suggestive of putative susceptibility factors for PD. Furthermore, we observed a decrease in α-syn protein level when hVPS41 was overexpressed in human neuroglioma cells. Thus, the neuroprotective capacity of hVPS41 may be a consequence of enhanced clearance of misfolded and aggregated proteins, including toxic α-syn species. These data reveal the importance of lysosomal trafficking in maintaining cellular homeostasis in the presence of enhanced α-syn expression and toxicity. Our results support hVPS41 as a potential novel therapeutic target for the treatment of synucleinopathies like PD.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , Multimerização Proteica , Proteínas de Transporte Vesicular/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Humanos , Doença de Parkinson/genética , Fatores de Transcrição/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA