Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888631

RESUMO

Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.


Assuntos
Venenos de Formiga , Formigas , Animais , Venenos de Formiga/farmacologia , Venenos de Formiga/química , Peptídeos/farmacologia , Peptídeos/química , Formigas/química
2.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293341

RESUMO

Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/metabolismo , Filogenia , Inseticidas/farmacologia , Inseticidas/metabolismo , Cisteína/metabolismo , Agentes de Controle Biológico/metabolismo , Simbiose , Peptídeos/farmacologia , Peptídeos/metabolismo , Dissulfetos/metabolismo , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo
3.
mBio ; 12(6): e0073021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781749

RESUMO

The acquisition of nutritional obligate primary endosymbionts (P-symbionts) allowed phloemo-phageous insects to feed on plant sap and thus colonize novel ecological niches. P-symbionts often coexist with facultative secondary endosymbionts (S-symbionts), which may also influence their hosts' niche utilization ability. The whitefly Bemisia tabaci is a highly diversified species complex harboring, in addition to the P-symbiont "Candidatus Portiera aleyrodidarum," seven S-symbionts whose roles remain poorly understood. Here, we compare the phenotypic and metabolic responses of three B. tabaci lines differing in their S-symbiont community, reared on three different host plants, hibiscus, tobacco, or lantana, and address whether and how S-symbionts influence insect capacity to feed and produce offspring on those plants. We first show that hibiscus, tobacco, and lantana differ in their free amino acid composition. Insects' performance, as well as free amino acid profile and symbiotic load, were shown to be plant dependent, suggesting a critical role for the plant nutritional properties. Insect fecundity was significantly lower on lantana, indicating that it is the least favorable plant. Remarkably, insects reared on this plant show a specific amino acid profile and a higher symbiont density compared to the two other plants. In addition, this plant was the only one for which fecundity differences were observed between lines. Using genetically homogeneous hybrids, we demonstrate that cytotype (mitochondria and symbionts), and not genotype, is a major determinant of females' fecundity and amino acid profile on lantana. As cytotypes differ in their S-symbiont community, we propose that these symbionts may mediate their hosts' suitable plant range. IMPORTANCE Microbial symbionts are universal in eukaryotes, and it is now recognized that symbiotic associations represent major evolutionary driving forces. However, the extent to which symbionts contribute to their hosts' ecological adaptation and subsequent diversification is far from being fully elucidated. The whitefly Bemisia tabaci is a sap feeder associated with multiple coinfecting intracellular facultative symbionts. Here, we show that plant species simultaneously affect whiteflies' performance, amino acid profile, and symbiotic density, which could be partially explained by differences in plant nutritional properties. We also demonstrate that, on lantana, the least favorable plant used in our study, whiteflies' performance is determined by their cytotype. We propose that the host plant utilization in B. tabaci is influenced by its facultative symbiont community composition, possibly through its impact on the host dietary requirements. Altogether, our data provide new insights into the impact of intracellular microorganisms on their animal hosts' ecological niche range and diversification.


Assuntos
Hemípteros/fisiologia , Hibiscus/parasitologia , Lantana/parasitologia , Nicotiana/parasitologia , Aminoácidos/química , Animais , Comportamento Alimentar , Fertilidade , Hemípteros/classificação , Hibiscus/química , Hibiscus/fisiologia , Especificidade de Hospedeiro , Lantana/química , Lantana/fisiologia , Mitocôndrias/metabolismo , Oviposição , Simbiose , Nicotiana/química , Nicotiana/fisiologia
4.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442304

RESUMO

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Assuntos
Especiação Genética , Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Elementos de DNA Transponíveis , Feminino , Dosagem de Genes , Glicoproteínas/genética , Herbivoria/genética , Imunidade/genética , Proteínas de Insetos/genética , Masculino , Família Multigênica , Receptores Odorantes/genética , Comportamento Social , Visão Ocular/genética
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(9): 1247-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136841

RESUMO

Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.


Assuntos
Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Receptores de Esteroides/metabolismo , Animais , Apoptose , Colesterol/metabolismo , Humanos , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA