Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(1): 116-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886351

RESUMO

Anion-exchange chromatography (AEX) is used in the downstream purification of monoclonal antibodies to remove impurities and potential viral contamination based on electrostatic interactions. Although the isoelectric point (pI) of viruses is considered a key factor predicting the virus adsorption to the resin, the precise molecular mechanisms involved remain unclear. To address this question, we compared structurally homologous parvoviruses that only differ in their surface charge distribution. A single charged amino acid substitution on the capsid surface of minute virus of mice (MVM) provoked an increased apparent pI (pIapp ) 6.2 compared to wild-type MVM (pIapp = 4.5), as determined by chromatofocusing. Despite their radically different pIapp , both viruses displayed the same interaction profile in Mono Q AEX at different pH conditions. In contrast, the closely related canine parvovirus (pIapp = 5.3) displayed a significantly different interaction at pH 5. The detailed structural analysis of the intricate three-dimensional structure of the capsids suggests that the charge distribution is critical, and more relevant than the pI, in controlling the interaction of a virus with the chromatographic resin. This study contributes to a better understanding of the molecular mechanisms governing virus clearance by AEX, which is crucial to enable robust process design and maximize safety.


Assuntos
Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/isolamento & purificação , Animais , Linhagem Celular Tumoral , Cromatografia por Troca Iônica , Ponto Isoelétrico , Camundongos
2.
Antiviral Res ; 162: 44-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550797

RESUMO

INTRODUCTION: Rhinovirus (RV) infection is a major cause of cystic fibrosis (CF) lung morbidity with limited therapeutic options. Various diseases involving chronic inflammatory response and infection are associated with endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR), an adaptive response to maintain cellular homeostasis. Recent evidence suggests impaired ER stress response in CF airway epithelial cells, this might be a reason for recurrent viral infection in CF. Therefore, assuming that ER stress inducing drugs have antiviral properties, we evaluated the activation of the UPR by selected ER stress inducers as an approach to control virus replication in the CF bronchial epithelium. METHODS: We assessed the levels of UPR markers, namely the glucose-regulated protein 78 (Grp78) and the C/EBP homologous protein (CHOP), in primary CF and control bronchial epithelial cells and in a CF and control bronchial epithelial cell line before and after infection with RV. The cells were also pretreated with ER stress-inducing drugs and RV replication and shedding was measured by quantitative RT-PCR and by a TCID50 assay, respectively. Cell death was assessed by a lactate dehydrogenate (LDH) activity test in supernatants. RESULTS: We observed a significantly impaired induction of Grp78 and CHOP in CF compare to control cells following RV infection. The ER stress response could be significantly induced in CF cells by pharmacological ER stress inducers Brefeldin A, Tunicamycin, and Thapsigargin. The chemical induction of the UPR pathway prior to RV infection of CF and control cells reduced viral replication and shedding by up to two orders of magnitude and protected cells from RV-induced cell death. CONCLUSION: RV infection causes an impaired activation of the UPR in CF cells. Rescue of the ER stress response by chemical ER stress inducers reduced significantly RV replication in CF cells. Thus, pharmacological modulation of the UPR might represent a strategy to control respiratory virus replication in the CF bronchial epithelium.


Assuntos
Antivirais/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Resposta a Proteínas não Dobradas , Replicação Viral/efeitos dos fármacos , Brônquios/citologia , Brônquios/virologia , Estudos de Casos e Controles , Células Cultivadas , Criança , Fibrose Cística/complicações , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/virologia , Humanos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA