Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 126908, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714229

RESUMO

The impact of microwave (MW) treatments on the structure, solubility, and techno-functional properties of the proteins in starchy matrices is still poorly understood. This study aimed to investigate the effects of MW intensity by applying 1, 2, and 6 min of radiation on two tef flour varieties moistened at 15 % and 25 %. The fractionation method recovered ∼83 % of the total protein content in untreated flours. The interaction between treatment time and moisture content (MC) significantly influenced the extraction of protein fractions. Samples treated at 25 %MC showed significant reductions in albumins (up to -74 %), globulins (up to -79 %), and prolamins (up to -32 %). The SDS-extractable proteins of both tef flours presented similar molecular weights (12-100 kDa). SDS-PAGE analysis revealed decreased band intensity in MW-treated samples compared to untreated flours, and confocal analysis showed changes in the native state of proteins in treated samples. Shorter treatments at low MC significantly improved the emulsifying stability of tef flours, particularly in brown tef flour, with an enhancement of up to 203 %. The hydration properties significantly increased in flours treated at 25 %MC for 6 min. Pearson correlation analysis demonstrated the influence of treatment time and MC on protein recovery and functional properties of tef flours.


Assuntos
Farinha , Micro-Ondas , Farinha/análise , Fenômenos Químicos , Amido/química , Solubilidade
2.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903544

RESUMO

In recent years, many efforts are being made to produce tef-based food for its nutritive and health-promoting advantages. Tef grain is always whole milled because of its tiny grain size and whole flours contain bran (pericarp, aleurone, and germ) where major non-starch lipids could be deposited along with the lipid-degrading enzymes: lipase and lipoxygenase. As lipoxygenase shows little activity in low moisture, the inactivation of lipase is the common objective for most heat treatments to extend the shelf life of flours. In this study, tef flour lipase inactivation kinetics via hydrothermal treatments assisted using microwaves (MW) were studied. The effects of tef flour moisture level (12%, 15%, 20%, and 25%) and MW treatment time (1, 2, 4, 6, and 8 min) on flour lipase activity (LA) and free fatty acid (FFA) content were evaluated. The effects of MW treatment on flour pasting characteristics and the rheological properties of gels prepared from the treated flours were also explored. The inactivation process followed a first-order kinetic response and the apparent rate constant of thermal inactivation increased exponentially with the moisture content of the flour (M) according to the equation 0.048·exp (0.073·M) (R2 = 0.97). The LA of the flours decreased up to 90% under the studied conditions. MW treatment also significantly reduced (up to 20%) the FFA level in the flours. The rheological study confirmed the presence of significant modifications induced by the treatment, as a lateral effect of the flour stabilization process.


Assuntos
Farinha , Lipase , Micro-Ondas , Géis , Lipoxigenases
3.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981270

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter] flour is a gluten-free cereal rich in fiber, minerals, vitamins, and antioxidants, which offers a promising alternative for new food development. This study investigated the effect of microwave radiation (MW) on the techno-functional, thermal, rheological and microstructural properties of tef flours. White and brown tef grains were milled and microwaved at different moisture contents (MC) (15%, 20% and 25%) for a total irradiation time of 480 s. The morphological structure of tef flours was affected by MW treatment, and its particle size and hydration properties increased after the treatment. Lower peak, breakdown, and setback viscosities, up to 45%, 96%, and 67% below those of the control (untreated) samples, and higher pasting temperature, up to 8 °C in the 25% MC samples, were observed. From FTIR analysis a disruption of short-range molecular order was concluded, while DSC confirmed an increased stability of starch crystallites. Rheological analysis of the gels made from the treated samples revealed that MW had a structuring and stabilizing effect on all samples, leading to higher viscoelastic moduli, G' and G″, and the maximum stress the gels withstood before breaking their structure, τmax. The MC of the flours during the MWT drove the modification of the techno-functional properties of the tef flours and the gel rheological and thermal characteristics. These results suggest that MW-treated tef flours are potential ingredients for improving the technological, nutritional and sensory quality of food products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA