Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Influenza Other Respir Viruses ; 18(6): e13336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880785

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is increasingly recognized as a significant cause of lower respiratory tract disease (LRTD) in older adults. The Ad26.RSV.preF/RSV preF protein vaccine demonstrated protective efficacy against RSV related LRTD in a Phase 2b study in the United States. Hence, Ad26.RSV.preF/RSV preF protein vaccine candidate was evaluated in the Japanese older adult population. METHODS: This Phase 1 study evaluated safety, reactogenicity, and immunogenicity of Ad26.RSV.preF/RSV preF protein vaccine at dose level of 1 × 1011 vp/150 µg in Japanese healthy adult aged ≥60 years. The study included a screening Phase, vaccination, 28-day follow up Phase, a 182-day follow-up period, and final visit on Day 183. A total of 36 participants were randomized in a 2:1 ratio to receive Ad26.RSV.preF/RSV preF protein vaccine (n = 24) or placebo (n = 12). After study intervention administration, the safety and immunogenicity analysis were performed as per planned schedule. Immune responses including virus-neutralizing and preF-specific binding antibodies were measured on Days 1, 15, 29, and 183. RESULTS: There were no deaths, SAEs, or AEs leading to discontinuation reported during the study. The Ad26.RSV.preF/RSV preF protein vaccine had acceptable safety and tolerability profile with no safety concern in Japanese older adults. The Ad26.RSV.preF/RSV preF protein vaccine induced RSV-specific humoral immunity, with increase in antibody titers on Days 15 and 29 compared with baseline which was well maintained until Day 183. CONCLUSIONS: A single dose of Ad26.RSV.preF/RSV preF protein vaccine had an acceptable safety and tolerability profile and induced RSV-specific humoral immunity in Japanese healthy adults. TRIAL REGISTRATION: NCT number: NCT04354480; Clinical Registry number: CR108768.


Assuntos
Anticorpos Antivirais , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Método Duplo-Cego , População do Leste Asiático , Imunogenicidade da Vacina , Japão , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia
2.
J Infect Dis ; 229(1): 19-29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37433021

RESUMO

BACKGROUND: Ad26.RSV.preF is an adenovirus serotype 26 vector-based respiratory syncytial virus (RSV) vaccine encoding a prefusion conformation-stabilized RSV fusion protein (preF) that demonstrated robust humoral and cellular immunogenicity and showed promising efficacy in a human challenge study in younger adults. Addition of recombinant RSV preF protein might enhance RSV-specific humoral immune responses, especially in older populations. METHODS: This randomized, double-blind, placebo-controlled, phase 1/2a study compared the safety and immunogenicity of Ad26.RSV.preF alone and varying doses of Ad26.RSV.preF-RSV preF protein combinations in adults aged ≥60 years. This report includes data from cohort 1 (initial safety, n = 64) and cohort 2 (regimen selection, n = 288). Primary immunogenicity and safety analyses were performed 28 days postvaccination (cohort 2) for regimen selection. RESULTS: All vaccine regimens were well tolerated, with similar reactogenicity profiles among them. Combination regimens induced greater humoral immune responses (virus-neutralizing and preF-specific binding antibodies) and similar cellular ones (RSV-F-specific T cells) as compared with Ad26.RSV.preF alone. Vaccine-induced immune responses remained above baseline up to 1.5 years postvaccination. CONCLUSIONS: All Ad26.RSV.preF-based regimens were well tolerated. A combination regimen comprising Ad26.RSV.preF, which elicits strong humoral and cellular responses, and RSV preF protein, which increases humoral responses, was selected for further development. Clinical Trials Registration. NCT03502707.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade Humoral , Imunogenicidade da Vacina , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Pessoa de Meia-Idade
3.
J Virol ; 97(11): e0077123, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902399

RESUMO

IMPORTANCE: Respiratory syncytial virus (RSV) can cause serious illness in older adults (i.e., those aged ≥60 years). Because options for RSV prophylaxis and treatment are limited, the prevention of RSV-mediated illness in older adults remains an important unmet medical need. Data from prior studies suggest that Fc-effector functions are important for protection against RSV infection. In this work, we show that the investigational Ad26.RSV.preF/RSV preF protein vaccine induced Fc-effector functional immune responses in adults aged ≥60 years who were enrolled in a phase 1/2a regimen selection study of Ad26.RSV.preF/RSV preF protein. These results demonstrate the breadth of the immune responses induced by the Ad26.RSV.preF/RSV preF protein vaccine.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Fragmentos Fc das Imunoglobulinas , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão/imunologia
4.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992257

RESUMO

RSV is divided into two antigenic subtypes, RSV A and RSV B, which is largely based on the variation in the G protein, while the fusion protein F is more conserved and a target for antibody-mediated neutralization. Here we evaluate the breadth of the protective immune responses across RSV A and RSV B subtypes, induced by vaccines based on the RSV A-based fusion protein, stabilized in the prefusion conformation (preF) in preclinical models. Immunization of naïve cotton rats with preF subunit or preF encoded by a replication incompetent Adenoviral 26, induced antibodies capable of neutralizing recent RSV A and RSV B clinical isolates, as well as protective efficacy against a challenge with RSV A and RSV B strains. Similarly, induction of cross-neutralizing antibodies was observed after immunization with Ad26-encoded preF, preF protein or a mix of both (Ad26/preF protein) in RSV pre-exposed mice and African Green Monkeys. Transfer of serum of human subjects immunized with Ad26/preF protein into cotton rats provide protection against challenges with both RSV A and RSV B, with complete protection against both strains observed in the lower respiratory tract. In contrast, almost no protection against RSV A and B infection was observed after the transfer of a human serum pool isolated pre-vaccination. These results collectively show that the RSV A-based monovalent Ad26/preF protein vaccine induced neutralizing antibodies, as well as protection against both RSV A and RSV B subtypes in animals, including by passive transfer of human antibodies alone, suggesting that clinical efficacy against both subtypes can be achieved.

5.
NPJ Vaccines ; 8(1): 45, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949051

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously shown that a prefusion (preF) conformation-stabilized RSV F protein antigen and an adenoviral vector encoding RSV preF protein (Ad26.RSV.preF) are immunogenic and protective in animals when administered as single components. Here, we evaluated a combination of the 2 components, administered as a single injection. Strong induction of both humoral and cellular responses was shown in RSV-naïve and pre-exposed mice and pre-exposed African green monkeys (AGMs). Both components of the combination vaccine contributed to humoral immune responses, while the Ad26.RSV.preF component was the main contributor to cellular immune responses in both mice and AGMs. Immunization with the combination elicited superior protection against RSV A2 challenge in cotton rats. These results demonstrate the advantage of a combination vaccine and support further clinical development.

6.
N Engl J Med ; 388(7): 609-620, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36791161

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) can cause serious lower respiratory tract disease in older adults, but no licensed RSV vaccine currently exists. An adenovirus serotype 26 RSV vector encoding a prefusion F (preF) protein (Ad26.RSV.preF) in combination with RSV preF protein was previously shown to elicit humoral and cellular immunogenicity. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 2b, proof-of-concept trial to evaluate the efficacy, immunogenicity, and safety of an Ad26.RSV.preF-RSV preF protein vaccine. Adults who were 65 years of age or older were randomly assigned in a 1:1 ratio to receive vaccine or placebo. The primary end point was the first occurrence of RSV-mediated lower respiratory tract disease that met one of three case definitions: three or more symptoms of lower respiratory tract infection (definition 1), two or more symptoms of lower respiratory tract infection (definition 2), and either two or more symptoms of lower respiratory tract infection or one or more symptoms of lower respiratory tract infection plus at least one systemic symptom (definition 3). RESULTS: Overall, 5782 participants were enrolled and received an injection. RSV-mediated lower respiratory tract disease meeting case definitions 1, 2, and 3 occurred in 6, 10, and 13 vaccine recipients and in 30, 40, and 43 placebo recipients, respectively. Vaccine efficacy was 80.0% (94.2% confidence interval [CI], 52.2 to 92.9), 75.0% (94.2% CI, 50.1 to 88.5), and 69.8% (94.2% CI, 43.7 to 84.7) for case definitions 1, 2, and 3, respectively. After vaccination, RSV A2 neutralizing antibody titers increased by a factor of 12.1 from baseline to day 15, a finding consistent with other immunogenicity measures. Percentages of participants with solicited local and systemic adverse events were higher in the vaccine group than in the placebo group (local, 37.9% vs. 8.4%; systemic, 41.4% vs. 16.4%); most adverse events were mild to moderate in severity. The frequency of serious adverse events was similar in the vaccine group and the placebo group (4.6% and 4.7%, respectively). CONCLUSIONS: In adults 65 years of age or older, Ad26.RSV.preF-RSV preF protein vaccine was immunogenic and prevented RSV-mediated lower respiratory tract disease. (Funded by Janssen Vaccines and Prevention; CYPRESS ClinicalTrials.gov number, NCT03982199.).


Assuntos
Anticorpos Neutralizantes , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Idoso , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Método Duplo-Cego , Infecções por Vírus Respiratório Sincicial/sangue , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/sangue , Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Eficácia de Vacinas , Imunogenicidade da Vacina/imunologia , Resultado do Tratamento
7.
Cell ; 185(26): 4873-4886.e10, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36513064

RESUMO

Respiratory syncytial virus (RSV) infection is a major cause of severe lower respiratory tract infection and death in young infants and the elderly. With no effective prophylactic treatment available, current vaccine candidates aim to elicit neutralizing antibodies. However, binding and neutralization have poorly predicted protection in the past, and accumulating data across epidemiologic cohorts and animal models collectively point to a role for additional antibody Fc-effector functions. To begin to define the humoral correlates of immunity against RSV, here we profiled an adenovirus 26 RSV-preF vaccine-induced humoral immune response in a group of healthy adults that were ultimately challenged with RSV. Protection from infection was linked to opsonophagocytic functions, driven by IgA and differentially glycosylated RSV-specific IgG profiles, marking a functional humoral immune signature of protection against RSV. Furthermore, Fc-modified monoclonal antibodies able to selectively recruit effector functions demonstrated significant antiviral control in a murine model of RSV.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas , Proteínas Virais de Fusão
8.
J Infect Dis ; 227(1): 71-82, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36259542

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) remains a leading cause of pediatric morbidity, with no approved vaccine. We assessed the safety and immunogenicity of the Ad26.RSV.preF vaccine candidate in adults and children. METHODS: In this randomized, double-blind, phase 1/2a, placebo-controlled study, 12 adults (18-50 years) and 36 RSV-seropositive children (12-24 months) were randomized 2:1 to Ad26.RSV.preF (1 × 1011 viral particles [vp] for adults, 5 × 1010 vp for children) or placebo, at day 1 and 29, with 6-month immunogenicity and 1-year safety follow-up. Respiratory syncytial virus infection was an exploratory outcome in children. RESULTS: In adults, solicited adverse events (AEs) were generally mild to moderate, with no serious AEs. In children, no vaccination-related serious AEs were reported; fever was reported in 14 (58.3%) Ad26.RSV.preF recipients. Baseline pediatric geometric mean titers for RSV A2 neutralization increased from 121 (95% confidence interval [CI], 76-191) to 1608 (95% CI, 730-3544) at day 29, and 2235 (95% CI, 1586-3150) at day 57, remaining elevated over 7 months. Respiratory syncytial virus infection was confirmed in fewer children receiving Ad26.RSV.preF (1, 4.2%) than placebo (5, 41.7%). CONCLUSIONS: Ad26.RSV.preF demonstrated immunogenicity in healthy adults and toddlers, with no safety concerns raised. Evaluations in RSV-seronegative children are underway.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Adulto , Criança , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus Sincicial Respiratório Humano/genética , Adenoviridae/genética , Imunogenicidade da Vacina
9.
Vaccines (Basel) ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36016151

RESUMO

The Marburg virus (MARV) and Sudan virus (SUDV) belong to the filovirus family. The sporadic human outbreaks occur mostly in Africa and are characterized by an aggressive disease course with high mortality. The first case of Marburg virus disease in Guinea in 2021, together with the increased frequency of outbreaks of Ebola virus (EBOV), which is also a filovirus, accelerated the interest in potential prophylactic vaccine solutions against multiple filoviruses. We previously tested a two-dose heterologous vaccine regimen (Ad26.Filo, MVA-BN-Filo) in non-human primates (NHP) and showed a fully protective immune response against both SUDV and MARV in addition to the already-reported protective effect against EBOV. The vaccine-induced glycoprotein (GP)-binding antibody levels appear to be good predictors of the NHP challenge outcome as indicated by the correlation between antibody levels and survival outcome as well as the high discriminatory capacity of the logistic model. Moreover, the elicited GP-specific binding antibody response against EBOV, SUDV, and MARV remains stable for more than 1 year. Overall, the NHP data indicate that the Ad26.Filo, MVA-BN-Filo regimen may be a good candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks.

10.
Vaccine ; 40(6): 934-944, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34973849

RESUMO

Respiratory Syncytial Virus (RSV) remains a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously described the derivation of an RSV Fusion protein (F) stabilized in its prefusion conformation (preF) as vaccine immunogen and demonstrated superior immunogenicity in naive mice of preF versus wild type RSV F protein, both as protein and when expressed from an Ad26 vaccine vector. Here we address the question if there are qualitative differences between the two vaccine platforms for induction of protective immunity. In naïve mice, both Ad26.RSV.preF and preF protein induced humoral responses, whereas cellular responses were only elicited by Ad26.RSV.preF. In RSV pre-exposed mice, a single dose of either vaccine induced cellular responses and strong humoral responses. Ad26-induced RSV-specific cellular immune responses were detected systemically and locally in the lungs. Both vaccines showed protective efficacy in the cotton rat model, but Ad26.RSV.preF conferred protection at lower virus neutralizing titers in comparison to RSV preF protein. Factors that may contribute to the protective capacity of Ad26.RSV.preF elicited immunity are the induced IgG2a antibodies that are able to engage Fcγ receptors mediating Antibody Dependent Cellular Cytotoxicity (ADCC), and the induction of systemic and lung resident RSV specific CD8 + T cells. These data demonstrate qualitative improvement of immune responses elicited by an adenoviral vector based vaccine encoding the RSV preF antigen compared to the subunit vaccine in small animal models which may inform RSV vaccine development.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética
11.
J Infect Dis ; 226(4): 595-607, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32939546

RESUMO

BACKGROUND: This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. METHODS: Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. RESULTS: All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. CONCLUSIONS: Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Vacínia , Adenoviridae , Adulto , Anticorpos Antivirais , Humanos , Sorogrupo , Vacínia/induzido quimicamente , Vaccinia virus/genética
12.
J Infect Dis ; 226(3): 396-406, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33400792

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a significant cause of severe lower respiratory tract disease in children and older adults, but has no approved vaccine. This study assessed the potential of Ad26.RSV.preF to protect against RSV infection and disease in an RSV human challenge model. METHODS: In this double-blind, placebo-controlled study, healthy adults aged 18-50 years were randomized 1:1 to receive 1 × 1011 vp Ad26.RSV.preF or placebo intramuscularly. Twenty-eight days postimmunization, volunteers were challenged intranasally with RSV-A (Memphis 37b). Assessments included viral load (VL), RSV infections, clinical symptom score (CSS), safety, and immunogenicity. RESULTS: Postchallenge, VL, RSV infections, and disease severity were lower in Ad26.RSV.preF (n = 27) vs placebo (n = 26) recipients: median VL area under the curve (AUC) quantitative real-time polymerase chain reaction: 0.0 vs 236.0 (P = .012; predefined primary endpoint); median VL-AUC quantitative culture: 0.0 vs 109; RSV infections 11 (40.7%) vs 17 (65.4%); median RSV AUC-CSS 35 vs 167, respectively. From baseline to 28 days postimmunization, geometric mean fold increases in RSV A2 neutralizing antibody titers of 5.8 and 0.9 were observed in Ad26.RSV.preF and placebo, respectively. Ad26.RSV.preF was well tolerated. CONCLUSIONS: Ad26.RSV.preF demonstrated protection from RSV infection through immunization in a human challenge model, and therefore could potentially protect against natural RSV infection and disease. CLINICAL TRIALS REGISTRATION: NCT03334695; CR108398, 2017-003194-33 (EudraCT); VAC18193RSV2002.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Imunização , Proteínas Virais de Fusão
13.
Lancet Infect Dis ; 22(1): 110-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529962

RESUMO

BACKGROUND: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. METHODS: This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1-17 years were enrolled in three age cohorts (12-17 years, 4-11 years, and 1-3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1-3 years after placebo injection to 21% (30 of 144) of children aged 4-11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12-17 years and 4-11 years age cohorts after the first and second dose, and pyrexia in the 1-3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12-17 years (9929 ELISA units [EU]/mL [95% CI 8172-12 064]), in 119 (99%) of 120 aged 4-11 years (10 212 EU/mL [8419-12 388]), and in 118 (98%) of 121 aged 1-3 years (22 568 EU/mL [18 426-27 642]). INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1-17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adolescente , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Humanos , Lactente , Injeções Intramusculares , Masculino , Serra Leoa , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
Lancet Infect Dis ; 22(1): 97-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529963

RESUMO

BACKGROUND: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. METHODS: The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1 × 108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant's last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736-6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312-4383]) at 21 days after the second vaccination. INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Adulto , Anticorpos Antivirais/imunologia , República Democrática do Congo , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Ebolavirus/genética , Feminino , Humanos , Imunidade Humoral , Masculino , Serra Leoa , Vacinação/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
15.
J Infect Dis ; 223(4): 699-708, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32851411

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) and influenza cause significant disease burden in older adults. Overlapping RSV and influenza seasonality presents the opportunity to coadminister vaccines for both infections. This study assessed coadministration of the investigational vaccine, Ad26.RSV.preF, an adenovirus serotype 26 (Ad26) vector encoding RSV F protein stabilized in its prefusion conformation (pre-F), with a seasonal influenza vaccine in older adults. METHODS: In this phase 2a, double-blind, placebo-controlled study, 180 adults aged ≥60 years received Ad26.RSV.preF plus Fluarix on day 1 and placebo on day 29, or placebo plus Fluarix on day 1 and Ad26.RSV.preF on day 29 (control). RESULTS: The coadministration regimen had an acceptable tolerability profile. Reactogenicity was generally higher after Ad26.RSV.preF versus Fluarix, but symptoms were generally transient and mild or moderate. At 28 days after the first vaccination, the upper confidence intervals of the hemagglutination inhibition antibody geometric mean ratio (control/coadministration) for all influenza strains were <2, demonstrating noninferiority. Robust neutralizing and binding antibody responses to RSV A2 were observed in both groups. CONCLUSIONS: Coadministration of Fluarix with Ad26.RSV.preF vaccine had an acceptable safety profile and showed no evidence of interference in immune response. The results are compatible with simultaneous seasonal vaccination with both vaccines. CLINICAL TRIALS REGISTRATION: NCT03339713.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Feminino , Humanos , Esquemas de Imunização , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/efeitos adversos , Masculino , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia
16.
J Infect Dis ; 222(6): 979-988, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32320465

RESUMO

BACKGROUND: Despite the high disease burden of respiratory syncytial virus (RSV) in older adults, there is no approved vaccine. We evaluated the experimental RSV vaccine, Ad26.RSV.preF, a replication-incompetent adenovirus 26 vector encoding the F protein stabilized in prefusion conformation. METHODS: This phase 1 clinical trial was performed in healthy adults aged ≥60 years. Seventy-two participants received 1 or 2 intramuscular injections of low-dose (LD; 5 × 1010 vector particles) or high-dose (HD; 1 × 1011 vector particles) Ad26.RSV.preF vaccine or placebo, with approximately 12 months between doses and 2-year follow-up for safety and immunogenicity outcomes. RESULTS: Solicited adverse events were reported by 44% of vaccine recipients and were transient and mild or moderate in intensity. No serious adverse events were related to vaccination. After the first vaccination, geometric mean titers for RSV-A2 neutralization increased from baseline (432 for LD and 512 for HD vaccine) to day 29 (1031 for LD and 1617 for HD). Pre-F-specific antibody geometric mean titers and median frequencies of F-specific interferon γ-secreting T cells also increased substantially from baseline. These immune responses were still maintained above baseline levels 2 years after immunization and could be boosted with a second immunization at 1 year. CONCLUSIONS: Ad26.RSV.preF (LD and HD) had an acceptable safety profile and elicited sustained humoral and cellular immune responses after a single immunization in older adults.


Assuntos
Adenoviridae , Vetores Genéticos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Adenoviridae/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Humanos , Imunidade Celular , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinação , Proteínas Virais de Fusão/genética
17.
PLoS One ; 13(2): e0192312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29462200

RESUMO

The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/imunologia , Vacinas Virais/imunologia , Animais , Feminino , Macaca fascicularis , Masculino
18.
Hum Gene Ther ; 29(3): 337-351, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28816084

RESUMO

Genetic vaccines based on replication-incompetent adenoviral (AdV) vectors are currently in clinical development. Monovalent AdV vectors express one antigen from an expression cassette placed in most cases in the E1 region. For many vaccines, inclusion of several antigens is necessary in order to raise protective immunity and/or target more than one pathogen or pathogen strain. On the basis of the current technology, a mix of several monovalent vectors can be employed. However, a mix of the standard monovalent AdV vectors may not be optimal with respect to manufacturing costs and the final dose per vector in humans. Alternatively, a variety of bivalent recombinant AdV vector approaches is described in the literature. It remains unclear whether all strategies are equally suitable for clinical development while preserving all the beneficial properties of the monovalent AdV (e.g., immunogenic potency). Therefore, a thorough assessment of different bivalent AdV strategies was performed in a head-to-head fashion compared with the monovalent benchmark. The vectors were tested for rescue efficiency, genetic stability, transgene expression, and potency to induce transgene-specific immune responses. We report that the vector expressing multiple antigens from a bidirectional expression cassette in E1 shows a better genetic stability profile and a potent transgene-specific immune response compared with the other tested bivalent vectors.


Assuntos
Adenoviridae , Expressão Gênica , Vetores Genéticos , Transgenes/imunologia , Células A549 , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C
19.
JAMA ; 315(15): 1610-23, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27092831

RESUMO

IMPORTANCE: Developing effective vaccines against Ebola virus is a global priority. OBJECTIVE: To evaluate an adenovirus type 26 vector vaccine encoding Ebola glycoprotein (Ad26.ZEBOV) and a modified vaccinia Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). DESIGN, SETTING, AND PARTICIPANTS: Single-center, randomized, placebo-controlled, observer-blind, phase 1 trial performed in Oxford, United Kingdom, enrolling healthy 18- to 50-year-olds from December 2014; 8-month follow-up was completed October 2015. INTERVENTIONS: Participants were randomized into 4 groups, within which they were simultaneously randomized 5:1 to receive study vaccines or placebo. Those receiving active vaccines were primed with Ad26.ZEBOV (5 × 10(10) viral particles) or MVA-BN-Filo (1 × 10(8) median tissue culture infective dose) and boosted with the alternative vaccine 28 or 56 days later. A fifth, open-label group received Ad26.ZEBOV boosted by MVA-BN-Filo 14 days later. MAIN OUTCOMES AND MEASURES: The primary outcomes were safety and tolerability. All adverse events were recorded until 21 days after each immunization; serious adverse events were recorded throughout the trial. Secondary outcomes were humoral and cellular immune responses to immunization, as assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot performed at baseline and from 7 days after each immunization until 8 months after priming immunizations. RESULTS: Among 87 study participants (median age, 38.5 years; 66.7% female), 72 were randomized into 4 groups of 18, and 15 were included in the open-label group. Four participants did not receive a booster dose; 67 of 75 study vaccine recipients were followed up at 8 months. No vaccine-related serious adverse events occurred. No participant became febrile after MVA-BN-Filo, compared with 3 of 60 participants (5%; 95% CI, 1%-14%) receiving Ad26.ZEBOV in the randomized groups. In the open-label group, 4 of 15 Ad26.ZEBOV recipients (27%; 95% CI, 8%-55%) experienced fever. In the randomized groups, 28 of 29 Ad26.ZEBOV recipients (97%; 95% CI, 82%- 99.9%) and 7 of 30 MVA-BN-Filo recipients (23%; 95% CI, 10%-42%) had detectable Ebola glycoprotein-specific IgG 28 days after primary immunization. All vaccine recipients had specific IgG detectable 21 days postboost and at 8-month follow-up. Within randomized groups, at 7 days postboost, at least 86% of vaccine recipients showed Ebola-specific T-cell responses. CONCLUSIONS AND RELEVANCE: In this phase 1 study of healthy volunteers, immunization with Ad26.ZEBOV or MVA-BN-Filo did not result in any vaccine-related serious adverse events. An immune response was observed after primary immunization with Ad26.ZEBOV; boosting by MVA-BN-Filo resulted in sustained elevation of specific immunity. These vaccines are being further assessed in phase 2 and 3 studies. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02313077.


Assuntos
Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade Humoral , Adulto , Vacinas contra Ebola/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Voluntários Saudáveis , Humanos , Imunidade Celular , Imunização Secundária , Masculino , Marburgvirus/imunologia , Pessoa de Meia-Idade , Método Simples-Cego , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vacínia/imunologia , Proteínas Virais/imunologia
20.
J Virol ; 85(20): 10582-97, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775467

RESUMO

Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.


Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Facilitadores , Linfócitos/virologia , Glicoproteínas de Membrana/metabolismo , Receptores de IgG/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Chlorocebus aethiops , Cisteína Proteases , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA