Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0135238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252475

RESUMO

The role of microglia during neurodegeneration remains controversial. We investigated whether microglial cells have a neurotoxic or neuroprotective function in the retina. Retinal explants from 10-day-old mice were treated in vitro with minocycline to inhibit microglial activation, with LPS to increase microglial activation, or with liposomes loaded with clodronate (Lip-Clo) to deplete microglial cells. Flow cytometry was used to assess the viability of retinal cells in the explants and the TUNEL method to show the distribution of dead cells. The immunophenotypic and morphological features of microglia and their distribution were analyzed with flow cytometry and immunocytochemistry. Treatment of retinal explants with minocycline reduced microglial activation and simultaneously significantly decreased cell viability and increased the presence of TUNEL-labeled cell profiles. This treatment also prevented the migration of microglial cells towards the outer nuclear layer, where cell death was most abundant. The LPS treatment increased microglial activation but had no effect on cell viability or microglial distribution. Finally, partial microglial removal with Lip-Clo diminished the cell viability in the retinal explants, showing a similar effect to that of minocycline. Hence, cell viability is diminished in retinal explants cultured in vitro when microglial cells are removed or their activation is inhibited, indicating a neurotrophic role for microglia in this system.


Assuntos
Ácido Clodrônico/química , Microglia/citologia , Nervo Óptico/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Ácido Clodrônico/administração & dosagem , Escherichia coli , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem , Lipopolissacarídeos/química , Lipossomos/química , Camundongos , Camundongos Endogâmicos C57BL , Minociclina/química , Neuroproteção , Nervo Óptico/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
2.
Invest Ophthalmol Vis Sci ; 56(2): 1301-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650421

RESUMO

PURPOSE: The purpose of this study was to investigate the incidence of DNA damage during postnatal development of the retina and the relationship between DNA damage and cell death. METHODS: DNA damage in the developing postnatal retina of C57BL/6 mice was assessed by determining the amounts of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is indicative of DNA oxidation and related to the formation of DNA single-strand breaks (SSBs), and phosphorylated histone H2AX (γ-H2AX), a marker of DNA double-strand breaks (DSBs). Poly(ADP-ribose) polymerase (PARP) activation was measured by ELISA and Western blotting. The location of γ-H2AX-positive and dying cells was determined by immunofluorescence and TUNEL assays. RESULTS: Oxidative DNA damage was maintained at low levels during high PARP activation between postnatal days 0 (P0) and P7. Phosphorylated histone H2AX gradually increased between P0 and P14 and decreased thereafter. Phosphorylated histone H2AX-positive cells with cell death morphology or TUNEL positivity were more abundant at P7 than at P14. CONCLUSIONS: Oxidative DNA damage in postnatal retina increases during development. It is low during the first postnatal week when PARP-1 activity is high but increases thereafter. The rise in DSBs when PARP activity is downregulated may be attributable to accumulated oxidative damage and SSBs. At P7 and P14, γ-H2AX-positive cells are repairing naturally occurring DNA damage, but some are dying (mostly at P7), probably due to an accumulation of irreparable DNA damage.


Assuntos
Dano ao DNA/genética , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Histonas/biossíntese , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/biossíntese
3.
Invest Ophthalmol Vis Sci ; 52(10): 7445-54, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21705688

RESUMO

PURPOSE: Poly(ADP-ribose) polymerase (PARP)-1 is a nuclear enzyme that transfers ADP-ribose units (PAR polymer) to nuclear proteins and has been implicated in caspase-independent cell death in different models of retinal degeneration. The involvement of PARP-1 in cell death occurring during normal postnatal development of the mouse retina was investigated. In addition, the expression of apoptosis-inducing factor (AIF), a caspase-independent cell death mediator, was explored because PARP-1 activation has been related to the translocation of a 57-kDa form of AIF into the cell nucleus. METHODS: Cell death was determined in retinas of developing mice by both ELISA and TUNEL. PARP-1, PAR, and AIF were analyzed by immunocytochemistry and immunoblotting. Quantification of PARP-1 mRNA levels was also performed by real-time PCR. RESULTS: PARP-1 upregulation and PAR polymer formation, indicative of PARP-1 activity, were observed during the first postnatal week simultaneously with the presence of abundant dying cells, some of which were not associated with active caspase-3. PARP-1 was downregulated and PARP-1 activity progressively declined in the retina during subsequent postnatal development, coinciding with the decrease in cell death. Truncated AIF (57 kDa) was present in the retina during the first postnatal week, gradually decreasing thereafter, and had a nuclear localization in some cells, which also showed strong PAR polymer nuclear staining. CONCLUSIONS: These results show that a caspase-independent cell death pathway exists during the normal development of the mouse retina and suggest that PARP-1 participates in this cell death pathway by mediating AIF translocation to the cell nucleus.


Assuntos
Apoptose/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Poli(ADP-Ribose) Polimerases/genética , Retina/enzimologia , Retina/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Fator de Indução de Apoptose/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nucleossomos , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Comp Neurol ; 506(2): 224-39, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18022954

RESUMO

Macrophage/microglial cells in the mouse retina during embryonic and postnatal development were studied by immunocytochemistry with Iba1, F4/80, anti-CD45, and anti-CD68 antibodies and by tomato lectin histochemistry. These cells were already present in the retina of embryos aged 11.5 days (E11.5) in association with cell death. At E12.5 some macrophage/microglial cells also appeared in peripheral regions of the retina with no apparent relationship with cell death. Immediately before birth microglial cells were present in the neuroblastic, inner plexiform (IPL), and ganglion cell (GCL) layers, and their distribution suggested that they entered the retina from the ciliary margin and the vitreous. The density of retinal microglial cells strongly decreased at birth, increased during the first postnatal week as a consequence of the entry of microglial precursors into the retina from the vitreous, and subsequently decreased owing to the cessation of microglial entry and the increase in retina size. The mature topographical distribution pattern of microglia emerged during postnatal development of the retina, apparently by radial migration of microglial cells from the vitreal surface in a vitreal-to-scleral direction. Whereas microglial cells were only seen in the GCL and IPL at birth, they progressively appeared in more scleral layers at increasing postnatal ages. Thus, microglial cells were present within all layers of the retina except the outer nuclear layer at the beginning of the second postnatal week. Once microglial cells reached their definitive location, they progressively ramified.


Assuntos
Microglia/fisiologia , Retina , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Diferenciação Celular , Embrião de Mamíferos , Marcação In Situ das Extremidades Cortadas , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Lectinas de Plantas/farmacocinética , Retina/citologia , Retina/embriologia , Retina/crescimento & desenvolvimento
5.
J Histochem Cytochem ; 54(6): 727-38, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16461367

RESUMO

The present study showed that the HIS-C7 monoclonal antibody, which recognizes the chick form of CD45, is a specific marker for macrophages/microglial cells in the developing and mature chick central nervous system (CNS). HIS-C7-positive cells were characterized according to their morphological features and chronotopographical distribution patterns within developing and adult CNS, similar to those of macrophages/microglial cells in the quail CNS and confirmed by their histochemical labeling with Ricinus communis agglutinin I, a lectin that recognizes chick microglial cells. Therefore, the HIS-C7 antibody is a valuable tool to identify brain macrophage and microglial cells in studies of the function, development, and pathology of the chick brain. CD45 expression differed between chick microglia (as revealed with HIS-C7 antibody) and mouse microglial cells (as revealed with an antibody against mouse form of CD45). Thus, a discontinuous label was seen on mouse microglial cells with the anti-mouse CD45 immunostaining, whereas the entire surface of chick microglial cells was labeled with the anti-chick CD45 staining. The functional relevance of these differences between species has yet to be determined.


Assuntos
Anticorpos Monoclonais , Encéfalo/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Especificidade de Anticorpos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Embrião de Galinha , Imuno-Histoquímica , Antígenos Comuns de Leucócito/imunologia , Camundongos , Codorniz , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA