Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 169: 112814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254390

RESUMO

OBJECTIVE: The aim of this study was to analyze the protein digestibility and postprandial metabolism in rats of milk protein matrices obtained by different industrial processes. MATERIAL AND METHODS: The study was conducted on Wistar rats that consumed a meal containing different 15N-labeled milk proteins. Four milk matrices were tested: native micellar caseins (C1), caseins low in calcium (C2 low Ca2+), a matrix containing a ratio 63:37 of caseins and whey proteins (CW2) and whey proteins alone (W). Blood and urine were collected during the postprandial period and rats were euthanized 6 h after meal intake to collect digestive contents and organs. RESULTS: Orocaecal digestibility values of amino acids ranged between 96.0 ± 0.2% and 96.6 ± 0.4% for C1-, C2 low Ca2+- and W-matrices, while this value was significantly lower for CW2 matrix (92.4 ± 0.5%). More dietary nitrogen was sequestered in the splanchnic area (intestinal mucosa and liver) as well as in plasma proteins after ingestion of W matrix, especially compared to the C1- and C2 low Ca2+-matrices. Peptidomic analysis showed that more milk protein-derived peptides were identified in the caecum of rats after the ingestion of the matrices containing caseins compared to W matrix. CONCLUSION: We found that demineralization of micellar caseins did not modify its digestibility and postprandial metabolism. The low digestibility of the modified casein-to-whey ratio matrix may be ascribed to a lower accessibility of the protein to digestive enzymes due to changes in the protein structure, while the higher nitrogen splanchnic retention after ingestion of whey was probably due to the fast assimilation of its protein content. Finally, our results showed that industrial processes that modify the structure and/or composition of milk proteins influence protein digestion and utilization.


Assuntos
Aminoácidos , Proteínas do Leite , Ratos , Animais , Proteínas do Leite/química , Aminoácidos/metabolismo , Caseínas/química , Proteínas do Soro do Leite , Período Pós-Prandial , Ratos Wistar , Nitrogênio/metabolismo , Peptídeos
2.
Adv Nutr ; 13(4): 1131-1143, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755836

RESUMO

The recent Food and Agricultural Organization/World Health Organization/United Nations University expert consultations on protein requirements and quality have emphasized the need for the new Digestible Indispensable Amino Acid Score (DIAAS), as a measure of protein quality. This requires human measurements of the true ileal digestibility of individual indispensable amino acids (IAAs) until the end of the small intestine. Digestibility is measured using standard oro-ileal balance methods, which can only be achieved by an invasive naso-ileal intubation in healthy participants or fistulation at the terminal ileum. Significant efforts have been made over the last 2 decades to develop noninvasive or minimally invasive methods to measure IAA digestibility in humans. The application of intrinsically labeled (with stable isotopes like 13C, 15N, and 2H) dietary proteins has helped in circumventing the invasive oro-ileal balance techniques and allowed the differentiation between endogenous and exogenous protein. The noninvasive indicator amino acid oxidation (IAAO) technique, which is routinely employed to measure IAA requirements, has been modified to estimate metabolic availability (a sum of digestibility and utilization) of IAA in foods, but provides an estimate for a single IAA at a time and is burdensome for participants. The recently developed minimally invasive dual isotope tracer method measures small intestinal digestibility of multiple amino acids at once and is suitable for use in vulnerable groups and disease conditions. However, it remains to be validated against standard oro-ileal balance techniques. This review critically evaluates and compares the currently available stable isotope-based protein quality evaluation methods with a focus on the digestibility and metabolic availability measurements in humans. In view of building a reliable DIAAS database of various protein sources and subsequently supporting protein content claims in food labeling, a re-evaluation and harmonization of the available methods are necessary.


Assuntos
Digestão , Íleo , Aminoácidos/metabolismo , Aminoácidos Essenciais , Colonoscopia , Proteínas Alimentares/metabolismo , Humanos , Íleo/metabolismo , Isótopos
3.
Neuroendocrinology ; 111(12): 1201-1218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33333517

RESUMO

INTRODUCTION: Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS: We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS: Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION: These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Região Hipotalâmica Lateral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , RNA Mensageiro/metabolismo , Ratos
4.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G592-G601, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31460792

RESUMO

Bariatric surgery may induce protein malabsorption, although data are scarce. This study aims at evaluating dietary protein bioavailability after different bariatric surgeries in rats. Diet-induced obese Wistar rats were operated for vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). The control group was composed of pair-fed, sham-operated rats (Sham). Two weeks after surgery, rats were fed a 15N protein meal. Protein bioavailability was assessed by determination of 15N recovery in the gastrointestinal tract and organs 6 h after the meal. Fractional protein synthesis rate (FSR) was assessed using a flooding dose of 13C valine. Weight loss was the highest in RYGB rats and the lowest in Sham rats. Surprisingly, RYGB (95.6 ± 0.7%) improved protein digestibility (P = 0.045) compared with Sham (93.5 ± 0.5%) and VSG (93.8 ± 0.6%). In contrast, 15N retained in the liver (P = 0.001) and plasma protein (P = 0.037) was lower than in Sham, with a similar trend in muscle (P = 0.052). FSR was little altered by bariatric surgery, except for a decrease in the kidney of RYGB (P = 0.02). The 15N distribution along the small intestinal tissue suggests that dietary nitrogen was considerably retained in the remodeled mucosa of RYGB compared with Sham. This study revealed that in contrast to VSG, RYGB slightly improved protein digestibility but altered peripheral protein bioavailability. This effect may be ascribed to a higher uptake of dietary amino acids by the remodeled intestine.NEW & NOTEWORTHY Using a sensitive 15N meal test, we found that gastric bypass slightly improved protein digestibility compared with sleeve gastrectomy or control but, in contrast, lowered protein retention in the liver and muscles. This paradox can be due to a higher uptake of dietary nitrogen by the intestinal mucosa that was hypertrophied. This study provides new insight on the digestive and metabolic fate of dietary protein in different models of bariatric surgery in rats.


Assuntos
Proteínas Alimentares/farmacocinética , Derivação Gástrica/métodos , Animais , Disponibilidade Biológica , Proteínas Alimentares/metabolismo , Digestão , Derivação Gástrica/efeitos adversos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Nitrogênio/farmacocinética , Ratos , Ratos Wistar
5.
Behav Brain Res ; 336: 135-144, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864207

RESUMO

The neuropeptide relaxin-3 (RLN3) binds with high affinity to its cognate receptor, relaxin-family peptide receptor 3 (RXFP3), and with lower affinity to RXFP1, the cognate receptor for relaxin. Intracerebroventricular (icv) administration of RLN3 in rats strongly increases food and water intake and alters the activity of the hypothalamic-pituitary-adrenal (HPA) and gonadal (HPG) axes, but the relative involvement of RXFP3 and RXFP1 in these effects is not known. Therefore, the effects of icv administration of equimolar (1.1 nmol) amounts of RLN3 and the RXFP3-selective agonist RXFP3-A2 on food and water intake, plasma levels of corticosterone, testosterone, and oxytocin and c-fos mRNA expression in key hypothalamic regions in male rats were compared. Food intake was increased by both RLN3 and RXFP3-A2, but the orexigenic effects of RXFP3-A2 were significantly stronger than RLN3, 30 and 60min after injection. Water intake and plasma corticosterone and testosterone levels were significantly increased by RLN3, but not by RXFP3-A2. Conversely, RXFP3-A2 but not RLN3 decreased oxytocin plasma levels. RLN3, but not RXFP3-A2, increased c-fos mRNA levels in the parvocellular (PVNp) and magnocellular (PVNm) paraventricular and supraoptic (SON) hypothalamic nuclei, in the ventral medial preoptic area (MPAv), and in the organum vasculosum of the lamina terminalis (OVLT). A significant increase in c-fos mRNA expression was induced in the perifornical lateral hypothalamic area (LHApf) by RLN3 and RXFP3-A2. These results suggest that RXFP1 is involved in the RLN3 stimulation of water intake and activation of the HPA and HPG axes. The reduced food intake stimulation by RLN3 compared to RXFP3-A2 may relate to activation of both orexigenic and anorexigenic circuits by RLN3.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/metabolismo , Animais , Corticosterona/sangue , Ingestão de Líquidos/efeitos dos fármacos , Alimentos , Sistema Hipotálamo-Hipofisário , Hipotálamo , Masculino , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Ocitocina/sangue , Sistema Hipófise-Suprarrenal , Proteínas Proto-Oncogênicas c-fos/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/farmacologia , Testosterona/sangue
6.
Endocrinology ; 156(2): 523-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406021

RESUMO

This study compared the effects of relaxin-3 (RLN3) on food intake, plasma corticosterone, and the expression of corticotropin-releasing factor (CRF) in male and female rats. RLN3 was injected into the lateral ventricle at 25, 200, and 800 pmol concentrations. RLN3 at 25 pmol increased food intake (grams) at 30 and 60 minutes after injection in female but not male rats. Female rats also showed higher increase in relative to body weight (BW) food intake (mg/g BW) for all RLN3 concentrations at 30 minutes and for 800 pmol of RLN3 at 60 minutes. Moreover, RLN3 at 800 pmol significantly increased 24-hour BW gain in female but not male rats. At 60 minutes after administration, 800 pmol of RLN3 produced a significant increase in plasma corticosterone and in the expression of CRF and c-fos mRNAs in the parvocellular paraventricular hypothalamic nucleus (PVN) in male but not female rats. The levels of c-fos mRNA in the magnocellular PVN were increased by RLN3 but did not differ between the sexes. Conversely, expression of CRF mRNA in the medial preoptic area was increased in female rats but was not sensitive to 800 pmol of RLN3. In the bed nucleus of the stria terminalis, 800 pmol of RLN3 significantly increased CRF mRNA expression in female but not male rats. Therefore, female rats showed more sensitivity and stronger food intake increase in response to RLN3. The differential effects of RLN3 on CRF expression in the PVN and bed nucleus of the stria terminalis may contribute to the sex-specific difference in the behavioral response.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Relaxina/metabolismo , Animais , Núcleo Central da Amígdala/metabolismo , Corticosterona/sangue , Feminino , Injeções Intraventriculares , Masculino , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleos Septais/metabolismo , Caracteres Sexuais , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA