Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400545, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269728

RESUMO

Inducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules. To the best of our knowledge, this is the first study that utilizes ASMS screening to discover small molecules targeting immune checkpoints. Compound 9 with a promising ICOS/ICOS-L inhibitory profile (IC50 = 29.38 ± 3.41 µM) was selected as the template for the modification. Following preliminary structure-activity relationship (SAR) study and molecular dynamic (MD) simulation revealed the critical role of the ortho-hydroxy group on compound 9 in the ICOS binding, as it could stabilize the interaction via the hydrogen bond formation with residuals on the glycan, and the depletion could lead to an activity lost. This work validates a promising inhibitor for the ICOS/ICOS-L interaction, and we anticipate future modifications could provide more potent modulators for this interaction.

2.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149231

RESUMO

Inducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules. To the best of our knowledge, this is the first study that utilizes ASMS screening to discover small molecules targeting immune checkpoints. Compound 9 with a promising ICOS/ICOS-L inhibitory profile (IC50 = 29.38 ± 3.41 µM) was selected as the template for the modification. Following preliminary structure-activity relationship (SAR) study and molecular dynamic (MD) simulation revealed the critical role of the ortho-hydroxy group on compound 9 in the ICOS binding, as it could stabilize the interaction via the hydrogen bond formation with residuals on the glycan, and the depletion could lead to an activity lost. This work validates a promising inhibitor for the ICOS/ICOS-L interaction, and we anticipate future modifications could provide more potent modulators for this interaction.

3.
Bioorg Med Chem Lett ; 99: 129599, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185345

RESUMO

Compared to small molecules and antibodies, cyclic peptides exhibit unique biochemical and therapeutic attributes in the realm of pharmaceutical applications. The interaction between the inducible costimulator (ICOS) and its ligand (ICOSL) plays a key role in T-cell differentiation and activation. ICOS/ICOSL inhibition results in a reduction in the promotion of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. Herein, we implement the computational cPEPmatch approach to design the first examples of cyclic peptides that inhibit ICOS/ICOSL interaction. The top cyclic peptide from our approach possessed an IC50 value of 1.87 ± 0.15 µM as an ICOS/ICOSL inhibitor and exhibited excellent in vitro pharmacokinetic properties as a drug candidate. Our work will lay the groundwork for future endeavors in cancer drug discovery, with the goal of developing cyclic peptides that target the ICOS/ICOSL interaction.


Assuntos
Antineoplásicos , Linfócitos T Reguladores , Anticorpos , Antineoplásicos/farmacologia , Proteína Coestimuladora de Linfócitos T Induzíveis , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
4.
J Pers Med ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248769

RESUMO

The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.

5.
ChemMedChem ; 18(23): e202300305, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37845178

RESUMO

There are currently no small molecules clinically approved as immune checkpoint modulators. Besides possessing oral bioavailability, cell-penetrating capabilities and enhanced tumor penetration compared to monoclonal antibodies (mAbs), small molecules are amenable to pharmacokinetic optimization, which allows adopting flexible dosage regimens that may avoid immune-related adverse events associated with mAbs. The interaction of inducible co-stimulator (ICOS) with its ligand (ICOS-L) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. This study represents the development and validation of a virtual screening strategy to identify small molecules that bind a novel druggable binding pocket in human ICOS. We used a lipophilic canyon in the apo-structure of ICOS and the ICOS/ICOS-L interface individually as templates for molecular dynamics simulation to generate 3D pharmacophores subsequently used for virtual screening campaigns. Our strategy was successful finding a first-in-class small molecule ICOS binder (5P, KD value=108.08±26.76 µM) and validating biophysical screening platforms for ICOS-targeted small molecules. We anticipate that future structural optimization of 5P will result in the discovery of high affinity chemical ligands for ICOS.


Assuntos
Farmacóforo , Linfócitos T , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Linfócitos T/metabolismo , Anticorpos Monoclonais
6.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675320

RESUMO

The gut microbiota and its derived metabolites greatly impact the host immune system, both innate and adaptive responses. Gut dysbiosis and altered levels of microbiota-derived metabolites have been described in several immune-related and immune-mediated diseases such as intestinal bowel disease, multiple sclerosis, or colorectal cancer. Gut microbial-derived metabolites are synthesized from dietary compounds ingested by the host or host-produced metabolites, and additionally, some bacterial products can be synthesized de novo. In this review, we focus on the two first metabolites families including short-chain fatty acids, indole metabolites, polyamines, choline-derived compounds, and secondary bile acids. They all have been described as immunoregulatory molecules that specifically affect the adaptive immune system and T helper 17 and regulatory T cells. We discuss the mechanisms of action and the consequences in health and diseases related to these gut microbial-derived metabolites. Finally, we propose that the exogenous administration of these molecules or other compounds that bind to their immunoregulatory receptors in a homologous manner could be considered therapeutic approaches.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Linfócitos T Reguladores , Sistema Imunitário
7.
Neurotherapeutics ; 19(5): 1617-1633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35902536

RESUMO

The pathogenic role of the interleukin 21 (IL-21) in different autoimmune diseases, such as multiple sclerosis (MS), has been extensively studied. However, its pleiotropic nature makes it a cytokine that may exhibit different activity depending on the immunological stage of the disease. In this study, we developed a gene therapy strategy to block the interaction between IL-21 and its receptor (IL-21R) by using adeno-associated vectors (AAV) encoding a new soluble cytokine receptor (sIL21R) protein. We tested this strategy in a murine model of experimental autoimmune encephalomyelitis (EAE), obtaining different clinical effects depending on the time at which the treatment was applied. Although the administration of the treatment during the development of the immune response was counterproductive, the preventive administration of the therapeutic vectors showed a protective effect by reducing the number of animals that developed the disease, as well as an improvement at the histopathological level and a modification of the immunological profile of the animals treated with the AAV8.sIL21R. The beneficial effect of the treatment was also observed when inducing the expression of the therapeutic molecule once the first neurological signs were established in a therapeutic approach with a doxycyline (Dox)-inducible expression system. All these clinical results highlight the pleiotropicity of this cytokine in the different clinical stages and its key role in the EAE immunopathogenesis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/terapia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Esclerose Múltipla/terapia , Terapia Genética/métodos , Citocinas/genética , Receptores de Citocinas/genética , Receptores de Citocinas/uso terapêutico
8.
Gut Microbes ; 12(1): 1813532, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900255

RESUMO

A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler's virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19+CD5+CD1dhigh) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1ß and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4+ T-cells purified from the mesenteric lymph nodes of Theiler's virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Sistema Nervoso/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Sistema Nervoso/imunologia , Neuroimunomodulação/efeitos dos fármacos
9.
Am J Pathol ; 189(3): 665-676, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553833

RESUMO

Bone morphogenetic proteins (BMPs) are secreted proteins that belong to the transforming growth factor-ß superfamily. In the adult brain, they modulate neurogenesis, favor astrogliogenesis, and inhibit oligodendrogenesis. Because BMPs may be involved in the failure of remyelination in multiple sclerosis (MS), we characterized the expression of BMP-2, BMP-4, BMP-5, and BMP-7; BMP type II receptor (BMPRII); and phosphorylated SMAD (pSMAD) 1/5/8 in lesions of MS and other demyelinating diseases. A total of 42 MS lesions, 12 acute ischemic lesions, 8 progressive multifocal leukoencephalopathy lesions, and 10 central nervous system areas from four nonneuropathological patients were included. Lesions were histologically classified according to the inflammatory activity. The expression of BMP-2, BMP-4, BMP-5, BMP-7, BMPRII, and pSMAD1/5/8 was quantified by immunostaining, and colocalization studies were performed. In MS lesions, astrocytes, microglia/macrophages, and neurons expressed BMP-2, BMP-4, BMP-5, and BMP-7; BMPRII; and pSMAD1/5/8. Oligodendrocytes expressed BMP-2 and BMP-7 and pSMAD1/5/8. The percentage of cells that expressed BMPs, BMPRII, and pSMAD1/5/8 correlated with the inflammatory activity of MS lesions, and changes in the percentage of positive cells were more relevant in MS than in other white matter-damaging diseases. These data indicate that BMPs are increased in active MS lesions, suggesting a possible role in MS pathogenesis.


Assuntos
Astrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/biossíntese , Regulação da Expressão Gênica , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Astrócitos/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Feminino , Humanos , Leucoencefalopatia Multifocal Progressiva/metabolismo , Leucoencefalopatia Multifocal Progressiva/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Oligodendroglia/patologia , Proteínas Smad/metabolismo , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA