Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373066

RESUMO

The majority of patients with Follicular Lymphoma (FL) experience subsequent phases of remission and relapse, making the disease "virtually" incurable. To predict the outcome of FL patients at diagnosis, various clinical-based prognostic scores have been proposed; nonetheless, they continue to fail for a subset of patients. Gene expression profiling has highlighted the pivotal role of the tumor microenvironment (TME) in the FL prognosis; nevertheless, there is still a need to standardize the assessment of immune-infiltrating cells for the prognostic classification of patients with early or late progressing disease. We studied a retrospective cohort of 49 FL lymph node biopsies at the time of the initial diagnosis using pathologist-guided analysis on whole slide images, and we characterized the immune repertoire for both quantity and distribution (intrafollicular, IF and extrafollicular, EF) of cell subsets in relation to clinical outcome. We looked for the natural killer (CD56), T lymphocyte (CD8, CD4, PD1) and macrophage (CD68, CD163, MA4A4A)-associated markers. High CD163/CD8 EF ratios and high CD56/MS4A4A EF ratios, according to Kaplan-Meier estimates were linked with shorter EFS (event-free survival), with the former being the only one associated with POD24. In contrast to IF CD68+ cells, which represent a more homogeneous population, higher in non-progressing patients, EF CD68+ macrophages did not stratify according to survival. We also identify distinctive MS4A4A+CD163-macrophage populations with different prognostic weights. Enlarging the macrophage characterization and combining it with a lymphoid marker in the rituximab era, in our opinion, may enable prognostic stratification for low-/high-grade FL patients beyond POD24. These findings warrant validation across larger FL cohorts.


Assuntos
Linfoma Folicular , Humanos , Intervalo Livre de Progressão , Linfoma Folicular/genética , Linfoma Folicular/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Rituximab , Microambiente Tumoral
3.
Clin Epigenetics ; 14(1): 43, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317853

RESUMO

Beckwith-Wiedemann syndrome (BWS, OMIM # 130650) is an imprinting disorder, associated with overgrowth and increased risk of embryonal tumors. Patients carrying hypomethylation in the KCNQ1OT1:TSS DMR (11p15.5) show MLID (Multilocus Imprinting Disturbance) upon epimutations at other imprinted regions. Few cases of BWS MLID's mothers with biallelic pathogenetic variants in maternal effect genes, mainly components of the subcortical maternal complex, are reported. We describe two families, one with a history of conception difficulties with a novel homozygous nonsense NLRP2 variant and another experiencing 8 miscarriages with a compound heterozygous PADI6 variant.


Assuntos
Aborto Espontâneo , Síndrome de Beckwith-Wiedemann , Infertilidade , Aborto Espontâneo/genética , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Feminino , Impressão Genômica , Células Germinativas , Humanos , Infertilidade/genética , Gravidez
4.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669975

RESUMO

The placental methylation pattern is crucial for the regulation of genes involved in trophoblast invasion and placental development, both key events for fetal growth. We investigated LINE-1 methylation and methylome profiling using a methylation EPIC array and the targeted methylation sequencing of 154 normal, full-term pregnancies, stratified by birth weight percentiles. LINE-1 methylation showed evidence of a more pronounced hypomethylation in small neonates compared with normal and large for gestational age. Genome-wide methylation, performed in two subsets of pregnancies, showed very similar methylation profiles among cord blood samples while placentae from different pregnancies appeared very variable. A unique methylation profile emerged in each placenta, which could represent the sum of adjustments that the placenta made during the pregnancy to preserve the epigenetic homeostasis of the fetus. Investigations into the 1000 most variable sites between cord blood and the placenta showed that promoters and gene bodies that are hypermethylated in the placenta are associated with blood-specific functions, whereas those that are hypomethylated belong mainly to pathways involved in cancer. These features support the functional analogies between a placenta and cancer. Our results, which provide a comprehensive analysis of DNA methylation profiling in the human placenta, suggest that its peculiar dynamicity can be relevant for understanding placental plasticity in response to the environment.


Assuntos
Metilação de DNA/genética , Placenta/metabolismo , Adulto , Feminino , Humanos , Recém-Nascido , Elementos Nucleotídeos Longos e Dispersos/genética , Anotação de Sequência Molecular , Gravidez , Análise de Componente Principal
5.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530447

RESUMO

Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Síndrome de Goldenhar/diagnóstico , Síndrome de Goldenhar/genética , Biologia Computacional/métodos , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Anotação de Sequência Molecular , Fenótipo
6.
Clin Epigenetics ; 12(1): 139, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928291

RESUMO

BACKGROUND: PADI6 is a component of the subcortical maternal complex, a group of proteins that is abundantly expressed in the oocyte cytoplasm, but is required for the correct development of early embryo. Maternal-effect variants of the subcortical maternal complex proteins are associated with heterogeneous diseases, including female infertility, hydatidiform mole, and imprinting disorders with multi-locus imprinting disturbance. While the involvement of PADI6 in infertility is well demonstrated, its role in imprinting disorders is less well established. RESULTS: We have identified by whole-exome sequencing analysis four cases of Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance whose mothers are carriers of PADI6 variants. In silico analysis indicates that these variants result in loss of function, and segregation analysis suggests they act as either recessive or dominant-negative maternal-effect mutations. Genome-wide methylation analysis revealed heterogeneous and extensively altered methylation profiles of imprinted loci in the patients, including two affected sisters, but not in their healthy siblings. CONCLUSION: Our results firmly establish the role of PADI6 in imprinting disorders. We report loss-of-function maternal-effect variants of PADI6 that are associated with heterogeneous multi-locus imprinting disturbances in the progeny. The rare finding of two siblings affected by Beckwith-Wiedemann syndrome suggests that in some cases, familial recurrence risk of these variants may be high. However, the heterogeneous phenotypes of the other pedigrees suggest that altered oocyte PADI6 function results in stochastic maintenance of methylation imprinting with unpredictable consequences on early embryo health.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA/genética , Herança Materna/genética , Proteína-Arginina Desiminase do Tipo 6/genética , Adolescente , Adulto , Síndrome de Beckwith-Wiedemann/diagnóstico , Pré-Escolar , Feminino , Impressão Genômica/genética , Heterozigoto , Humanos , Mola Hidatiforme/epidemiologia , Mola Hidatiforme/genética , Lactente , Infertilidade Feminina/epidemiologia , Infertilidade Feminina/genética , Masculino , Mutação , Oócitos/metabolismo , Linhagem , Fenótipo , Gravidez , Irmãos , Sequenciamento do Exoma/métodos
7.
Genes (Basel) ; 11(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224912

RESUMO

DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.


Assuntos
Metilação de DNA , Epigenômica , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genoma Humano , Humanos , Fenótipo
8.
Genome Med ; 11(1): 84, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847873

RESUMO

BACKGROUND: Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address. METHODS: Single-cell bisulphite sequencing (scBS-seq) was used to assess methylation in oocytes from a patient with BiCHM identified to be homozygous for an inactivating mutation in the human SCMC component KHDC3L. Genome-wide methylation analysis of a preimplantation embryo and molar tissue from the same patient was also performed. RESULTS: High-coverage scBS-seq libraries were obtained from five KHDC3Lc.1A>G oocytes, which revealed a genome-wide deficit of DNA methylation compared with normal human oocytes. Importantly, germline differentially methylated regions (gDMRs) of imprinted genes were affected similarly to other sequence features that normally become methylated in oocytes, indicating no selectivity towards imprinted genes. A range of methylation losses was observed across genomic features, including gDMRs, indicating variable sensitivity to defects in the SCMC. Genome-wide analysis of a pre-implantation embryo and molar tissue from the same patient showed that following fertilisation methylation defects at imprinted genes persist, while most non-imprinted regions of the genome recover near-normal methylation post-implantation. CONCLUSIONS: We show for the first time that the integrity of the SCMC is essential for de novo methylation in the female germline. These findings have important implications for understanding the role of the SCMC in DNA methylation and for the origin of imprinting defects, for counselling affected families, and will help inform future therapeutic approaches.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Mola Hidatiforme/patologia , Oócitos/metabolismo , Proteínas/genética , Neoplasias Uterinas/patologia , Adulto , Feminino , Humanos , Mola Hidatiforme/genética , Recidiva Local de Neoplasia , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de DNA , Análise de Célula Única , Neoplasias Uterinas/genética
9.
Eur J Hum Genet ; 24(2): 183-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25898929

RESUMO

Beckwith-Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype-phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n=190), IC1 gain of methylation (IC1-GoM, n=31), chromosome 11p15 paternal uniparental disomy (UPD, n=87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n=10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (P<0.001). Exomphalos was more common in IC2/CDKN1C patients (P<0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (P<0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (P<0.001). Macroglossia was less common among UPD patients (P<0.001). Wilms' tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (P<0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P=0.009). In conclusion, (epi)genotype-phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Estudos de Associação Genética , Impressão Genômica , Neoplasias/genética , Síndrome de Beckwith-Wiedemann/complicações , Síndrome de Beckwith-Wiedemann/patologia , Cromossomos Humanos Par 11/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Metilação de DNA/genética , Feminino , Genótipo , Humanos , Masculino , Neoplasias/etiologia , Neoplasias/patologia , Fenótipo
10.
Epigenetics ; 8(10): 1053-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917791

RESUMO

Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p<0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75-86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55-59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Epigênese Genética , Criança , Pré-Escolar , Feminino , Doenças Fetais/genética , Impressão Genômica , Hérnia Umbilical/genética , Humanos , Lactente , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA