Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Biosci (Landmark Ed) ; 27(9): 273, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36224023

RESUMO

INTRODUCTION: Studies show that electric fields are used as therapy during nerve and tissue injuries along with trans-retinal stimulation. However, cellular and molecular changes induced by such treatments remain largely unknown especially in retinal photoreceptor cells. In vitro studies show that direct current electric fields (dcEF) were known to influence cell division, polarity, shape, and motility. Here we could characterize for the first time the reactions of 661W, a retinal cone photoreceptor especially regarding organelle polarization, membrane polarization of mitochondria, O2 consumption, ATP/ADP ratio and gene expression. METHODS: The 661W cells were stimulated with a constant dcEF of field strength 5 V/cm during 30 min or 5 h depending on the parameters studied. RESULTS: In response to dcEF, the cells aligned perpendicular to the field by forming a leading edge with extended membrane protrusions towards the cathode. Using immunofluorescence and live cell imaging, we show that the cell membrane depolarized at the cathodal side. The microtubules spread into the direction of migration. Also, the microtubule organization center re-oriented into this direction. Concomitantly with the microtubules, actin filaments reorganized in an asymmetrical fashion mainly at the cathodal side. The Golgi apparatus, which is involved in many steps of actin synthesis, moved to the cathodal side. In the last 2 h of the 5 h experiment, microtubules positioned themselves at the rear (anodal side), like the nucleus. The averaged displacement of the whole cells under dcEF was 155% of control for 3 V/cm and 235% for 5 V/cm. The average speed increased by 142% and 243% respectively. Inside the cells mitochondria moved to the cathodal side, where the energy consuming producing processes take place. In this line, we measured an increase in ATP production and O2 consumption. Mitochondrial calcium was found more on the anodal side, at the site of the nucleus with its calcium delivering endoplasmic reticulum. In addition, oxymetry studies reveal an increased ATP synthesis by 115.2% and oxygen consumption by 113.3% 3 h after dcEF stimulation. An analysis of differentially expressed genes by RNA sequencing revealed an upregulation of genes involved in cellular movement, cell to cell and intracellular signaling, molecular transport, assembly and organization. CONCLUSIONS: The mechanisms found can enhance our understanding regarding the beneficial effects of EF treatment in retinal diseases.


Assuntos
Actinas , Células Fotorreceptoras Retinianas Cones , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina , Cálcio/metabolismo , Movimento Celular/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
Cells ; 11(19)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36231131

RESUMO

Several studies have shown that mammalian retinal rod outer segments (OS) are peculiar structures devoid of mitochondria, characterized by ectopic expression of the molecular machinery for oxidative phosphorylation. Such ectopic aerobic metabolism would provide the chemical energy for the phototransduction taking place in the OS. Natural polyphenols include a large variety of molecules having pleiotropic effects, ranging from anti-inflammatory to antioxidant and others. Our goal in the present study was to investigate the potential of the flavonoid cirsiliol, a trihydroxy-6,7-dimethoxyflavone extracted from Salvia x jamensis, in modulating reactive oxygen species production by the ectopic oxidative phosphorylation taking place in the OS. Our molecular docking analysis identified cirsiliol binding sites inside the F1 moiety of the nanomotor F1Fo-ATP synthase. The experimental approach was based on luminometry, spectrophotometry and cytofluorimetry to evaluate ATP synthesis, respiratory chain complex activity and H2O2 production, respectively. The results showed significant dose-dependent inhibition of ATP production by cirsiliol. Moreover, cirsiliol was effective in reducing the free radical production by the OS exposed to ambient light. We report a considerable protective effect of cirsiliol on the structural stability of rod OS, suggesting it may be considered a promising compound against oxidative stress.


Assuntos
Flavonas , Salvia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes , Flavonas/farmacologia , Radicais Livres , Peróxido de Hidrogênio , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Salvia/metabolismo
3.
J Neurosci Res ; 99(9): 2250-2260, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085315

RESUMO

The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.


Assuntos
Trifosfato de Adenosina/biossíntese , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Retina/metabolismo , Trifosfato de Adenosina/administração & dosagem , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Prosencéfalo/efeitos dos fármacos , Retina/efeitos dos fármacos
4.
Free Radic Biol Med ; 160: 368-375, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32853720

RESUMO

We have previously shown that the retinal rod outer segments (OS) produce reactive oxygen species in the function of illumination in vitro, establishing a relationship among the extra-mitochondrial oxidative phosphorylation and phototransduction. This source of oxidative stress in the OS can be modulated by polyphenols, acting as inhibitors of F1Fo-ATP synthase. The present study aimed at exploring whether sclareol, a diterpene, interacts with F1Fo-ATP synthase mitigating the light-induced free radical production in the rod OS. Characterization of bovine retinal sections was conducted by immunogold analysis. Reactive oxygen intermediates production, oxygen consumption, the activity of the four respiratory complexes and ATP synthesis were evaluated in purified bovine rod OS. Molecular docking analyses were also conducted. Sclareol reduced free radical production by light-exposed rod OS. Such antioxidant effect was associated with an inhibition of the respiratory complexes and oxygen consumption (OCR), in coupled conditions. Sclareol also inhibited the rod OS ATP synthetic ability. Since the inhibitor effect on respiratory complexes and OCR is not observed in uncoupled conditions, it is supposed that the modulating effect of sclareol on the ectopic oxidative phosphorylation in the rod OS targets specifically the F1Fo-ATP synthase. This hypothesis is confirmed by the in silico molecular docking analyses, which shows that sclareol binds the F1 moiety of ATP synthase with high affinity. In conclusion, a beneficial effect of sclareol can be envisaged as a modulator of oxidative stress in the photoreceptor, a risk factor for the degenerative retinal diseases, suggestive of its potential beneficial action also in vivo.


Assuntos
Diterpenos , Segmento Externo da Célula Bastonete , Trifosfato de Adenosina , Animais , Bovinos , Radicais Livres , Simulação de Acoplamento Molecular
5.
FASEB Bioadv ; 2(5): 315-324, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32395704

RESUMO

PURPOSE: The retinal rod outer segment (OS) disk membranes, devoid of mitochondria, conducts oxidative phosphorylation (OxPhos). This study aimed at identifying which proteins expressed in the retinal rod OS disks determined the considerable adenosine-5'-triphosphate production and oxygen consumption observed in comparison with retinal mitochondria. PROCEDURES: Characterization was conducted by immunogold transmission electron microscopy on retinal sections. OxPhos was studied by oximetry and luminometry. The proteomes of OS disks and mitochondria purified from bovine retinas were studied by mass spectrometry. Statistical and bioinformatic analyses were conducted by univariate, multivariate, and machine learning methods. RESULTS: Weighted gene coexpression network analysis identified two protein expression profile modules functionally associated with either retinal mitochondria or disk samples, in function of a strikingly different ability of each sample to utilized diverse substrate for F1Fo-ATP synthase. The OS disk proteins correlated better than mitochondria with the tricarboxylic acids cycle and OxPhos proteins. CONCLUSIONS: The differential enrichment of the expression profile of the OxPhos proteins in the disks versus mitochondria suggests that these proteins may represent a true proteome component of the former, with different functionality. These findings may shed new light on the pathogenesis of rod-driven retinal degenerative diseases.

6.
J Nat Prod ; 83(4): 1027-1042, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32182064

RESUMO

A surface extract of the aerial parts of Salvia tingitana afforded a nor-sesterterpenoid (1) and eight new sesterterpenoids (2-̵9), along with five known sesterterpenoids, five labdane and one abietane diterpenoid, one sesquiterpenoid, and four flavonoids. The structures of the new compounds were established by 1D and 2D NMR spectroscopy, HRESIMS, and VCD data and Mosher's esters analysis. The antimicrobial activity of compounds was evaluated against 30 human pathogens including 27 clinical strains and three isolates of marine origin for their possible implications on human health. The methyl ester of salvileucolide (10), salvileucolide-6,23-lactone (11), sclareol (15), and manool (17) were the most active against Gram-positive bacteria. The compounds were also tested for the inhibition of ATP production in purified mammalian rod outer segments. Terpenoids 10, 11, 15, and 17 inhibited ATP production, while only 17 inhibited also ATP hydrolysis. Molecular modeling studies confirmed the capacity of 17 to interact with mammalian ATP synthase. A significant reduction of ATP production in the presence of 17 was observed in Enterococcus faecalis and E. faecium isolates.


Assuntos
Abietanos/farmacologia , Antibacterianos/farmacologia , Diterpenos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Trifosfato de Adenosina/química , Antibacterianos/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Lactonas/química , Estrutura Molecular , Componentes Aéreos da Planta/química , Salvia/química
7.
J Cell Physiol ; 235(4): 3508-3518, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31549411

RESUMO

Muscle loss is a major problem for many in lifetime. Muscle and bone degeneration has also been observed in individuals exposed to microgravity and in unloading conditions. C2C12 myoblst cells are able to form myotubes, and myofibers and these cells have been employed for muscle regeneration purposes and in myogenic regeneration and transplantation studies. We exposed C2C12 cells in an random position machine to simulate microgravity and study the energy and the biochemical challenges associated with this treatment. Simulated microgravity exposed C2C12 cells maintain positive proliferation indices and delay the differentiation process for several days. On the other hand this treatment significantly alters many of the biochemical and the metabolic characteristics of the cell cultures including calcium homeostasis. Recent data have shown that these perturbations are due to the inhibition of the ryanodine receptors on the membranes of intracellular calcium stores. We were able to reverse this perturbations treating cells with thapsigargin which prevents the segregation of intracellular calcium ions in the mitochondria and in the sarco/endoplasmic reticula. Calcium homeostasis appear a key target of microgravity exposure. In conclusion, in this study we reported some of the effects induced by the exposure of C2C12 cell cultures to simulated microgravity. The promising information obtained is of fundamental importance in the hope to employ this protocol in the field of regenerative medicine.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Regeneração/efeitos da radiação , Ausência de Peso/efeitos adversos , Animais , Sinalização do Cálcio/efeitos da radiação , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos da radiação , Humanos , Camundongos , Desenvolvimento Muscular/efeitos da radiação , Fibras Musculares Esqueléticas/efeitos da radiação , Mioblastos/metabolismo , Mioblastos/efeitos da radiação , Simulação de Ausência de Peso/efeitos adversos
8.
Life Sci ; 232: 116610, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254584

RESUMO

AIMS: The aim of this study was the characterization of the in vitro cytotoxic properties of a recently isolated diterpene compound, 7ß-acetoxy-20-hydroxy-19,20-epoxyroyleanone (compound 1), extracted from Salvia corrugata, versus human cell lines. MAIN METHODS: We used as model study immortalized breast epithelial cells MCF10A and two ERBB2+ breast cancer (BCa) cell lines, SKBR-3 and BT474. Compound 1 was isolated by methanolic extraction from regenerated shoots of Salvia corrugata Vahl, and purified by high pressure liquid chromatography (HPLC). Flow cytometry (FCM) was employed for cell cycle, apoptosis and reactive oxygen species (ROS) analysis. Cell morphology was assessed by immunofluorescence and transmission electron microscopy (TEM). KEY FINDINGS: Compound 1 inhibited cell survival of all breast cell lines. In particular, compound 1 promoted cell cycle arrest in the G0/G1 phase and apoptosis along with impairment of the mitochondrial function, which was reflected in a gross alteration of the mitochondrial network structure. Furthermore, we also detected a potent activation of the ERK1/2 kinase, which suggested the induction of reactive oxygen species (ROS). Partial rescue of survival obtained with n-acetylcysteine (NAC) when coadminstered with compound 1 further supported a contribution of ROS mediated mechanisms to the growth-arrest and proapoptotic activity of compound 1 in both BCa cell lines. ROS production was indeed confirmed in SKBR-3. SIGNIFICANCE: Our findings show that compound 1 has a cytotoxic activity against both human normal and cancer cell lines derived from breast epithelia, which is mediated by ROS generation and mitochondrial damage.


Assuntos
Mama/efeitos dos fármacos , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mama/citologia , Mama/metabolismo , Canfanos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/isolamento & purificação , Células Epiteliais/metabolismo , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Panax notoginseng , Espécies Reativas de Oxigênio/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Salvia miltiorrhiza
9.
Metab Syndr Relat Disord ; 17(1): 53-59, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30376422

RESUMO

PURPOSE: Fanconi anemia (FA) is a complex tumor-prone disease defined by an entangled genotype and phenotype. Despite enormous efforts in the last 20 years, a comprehensive and integrated view of the disease is still missing. The aim of this pilot study was to establish whether a global microRNA (miRNA) analysis approach could be helpful in defining aspects in FA phenotype, which might deserve future attention with the perspective to develop miRNA-based therapies. METHODS: miRNA array were employed to characterize the global miRNA (miRNoma) profile of FA RNA samples with respect to normal samples. RESULTS: We report and compare miRNA profile from two FA established cell lines and three FA patients. This analysis reveals that 36 and 64 miRNAs, respectively, are found differentially expressed (>2-fold variation and P < 0.05) in the samples from FA cell lines and FA patients. Overlap of these data results in 24 miRNAs as shared in the two sample populations. Available bioinformatics methods were used to predict target genes for the differentially expressed miRNAs and to perform pathway enrichment analysis. CONCLUSIONS: Seven pathway results associated with the FA phenotype. It is interesting to note that some of these pathways were previously unrelated to FA phenotype. It might be important to focus on these pathways not previously emerged as dysfunctional in FA to better define the pathophysiological context of this disease. This is the first report of a global miRNA analysis in FA.


Assuntos
Anemia de Fanconi/genética , MicroRNAs/genética , Transcriptoma , Estudos de Casos e Controles , Linhagem Celular , Criança , Anemia de Fanconi/epidemiologia , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Masculino , Análise em Microsséries , Fenótipo , Projetos Piloto
10.
Expert Rev Proteomics ; 15(10): 801-808, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253662

RESUMO

INTRODUCTION: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes. Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs' role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis. Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Medicina de Precisão/métodos , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas/métodos
11.
Biol Cell ; 110(5): 97-108, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29537672

RESUMO

BACKGROUND INFORMATION: Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS: Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the ß subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS: Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE: This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.


Assuntos
Plaquetas/fisiologia , Metabolismo Energético , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise , Voluntários Saudáveis , Humanos , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxirredução
12.
Proteomics Clin Appl ; 12(3): e1700082, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29148239

RESUMO

PURPOSE: Microvesicles (MVs), 200-1000 nm bodies budding from the cell plasma membrane, are a promising source of biomarkers. This study aimed at comparing the proteome of MVs collected by ultracentrifugation from cultured Mesenchymal Stem Cells (MSCs) from Human Umbilical Cord of Preterm newborns (<34-weeks gestational age) in comparison to infants at Term (≥37 weeks). This discovery study was designed to establish the signature of prematurity. EXPERIMENTAL DESIGN: Orbitrap MS, statistical, bioinformatics and biochemical analyses were employed. RESULTS: A total of 3253 proteins were identified, 78.3% matching among Preterm and Term. Principal component dimensional analyses showed that the two proteomes cluster separately. Cytoscape analysis showed that the top gene signatures cluster around inflammation and oxidative metabolism. Both Preterm and Term MVs consumed oxygen, and express ATP synthase and cytochrome oxidase, but only Preterm MVs synthesized ATP. The gene signature of Preterm condition mainly clusters around inflammation and metabolism. CONCLUSION AND CLINICAL RELEVANCE: MVs from MSCs conduct aerobic metabolism similarly to exosomes from the same cells, with interesting differences related to their biogenesis and function. The clinical relevance of the study lays in the perspective to utilize MVs as promising sensor of the inflammatory and metabolic state of the preterm newborn, to help in preventing the complications of prematurity.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células-Tronco Mesenquimais/citologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Proteômica , Cordão Umbilical/citologia , Feminino , Humanos , Recém-Nascido , Gravidez
13.
Dev Genes Evol ; 227(3): 201-211, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474175

RESUMO

High mobility group A proteins of vertebrates, HMGA1 and 2, are chromatin architectural factors involved in development, cell differentiation, and neoplastic transformation. Here, we characterize an amphioxus HMGA gene ortholog and analyze its expression. As a basal chordate, amphioxus is well placed to provide insights into the evolution of the HMGA gene family, particularly in the transition from invertebrates to vertebrates. Our phylogenetic analysis supports the basal position of amphioxus, echinoderm, and hemichordate HMGA sequences to those of vertebrate HMGA1 and HMGA2. Consistent with this, the genomic landscape around amphioxus HMGA shares features with both. Whole mount in situ hybridization shows that amphioxus HMGA mRNA is detectable from neurula stage onwards in both nervous and non-nervous tissues. This correlates with protein expression monitored immunocytochemically using antibodies against human HMGA2 protein, revealing especially high levels of expression in cells of the lamellar body, the amphioxus homolog of the pineal, suggesting that the gene may have, among its many functions, an evolutionarily conserved role in photoreceptor differentiation.


Assuntos
Proteínas HMGA/genética , Anfioxos/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Evolução Molecular , Microscopia Eletrônica de Transmissão , Filogenia , Alinhamento de Sequência
14.
Biochem Biophys Res Commun ; 482(4): 922-927, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27890618

RESUMO

F1Fo-ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H+ flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H+ within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F1 and FO domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo.


Assuntos
ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Prótons , Serina/metabolismo , Treonina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Alinhamento de Sequência , Serina/química , Treonina/química , Difração de Raios X
15.
Biochimie ; 125: 171-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059514

RESUMO

Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Luz , Fosforilação Oxidativa/efeitos da radiação , ATPases Translocadoras de Prótons/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Animais , Feminino , Masculino , Camundongos
16.
Med Hypotheses ; 90: 53-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27063086

RESUMO

Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess.


Assuntos
Adenosina/sangue , Recém-Nascido Prematuro/sangue , Recém-Nascido de muito Baixo Peso/sangue , Modelos Biológicos , Potenciais de Ação , Trifosfato de Adenosina/biossíntese , Axônios/metabolismo , Barreira Hematoencefálica , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , Recém-Nascido , Bainha de Mielina/fisiologia , Neurogênese , Oligodendroglia/citologia , Fosforilação Oxidativa , Estresse Oxidativo , Oxigênio/administração & dosagem , Oxigênio/efeitos adversos , Oxigênio/sangue , Oxigenoterapia/efeitos adversos
17.
FASEB J ; 30(4): 1416-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26655706

RESUMO

Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.


Assuntos
Metabolismo Energético , Exossomos/metabolismo , Recém-Nascido Prematuro/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nascimento a Termo/metabolismo , Trifosfato de Adenosina/biossíntese , Western Blotting , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Oximetria , Consumo de Oxigênio , Nascimento a Termo/sangue
18.
Mol Neurobiol ; 53(4): 2468-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26033217

RESUMO

Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath.


Assuntos
Conectoma , Bainha de Mielina/metabolismo , Condução Nervosa , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Conexinas/metabolismo , Metabolismo Energético , Junções Comunicantes/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio
19.
Neurochem Res ; 40(11): 2230-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26334391

RESUMO

Our previous studies reported evidence for aerobic ATP synthesis by myelin from both bovine brainstem and rat sciatic nerve. Considering that the optic nerve displays a high oxygen demand, here we evaluated the expression and activity of the five Respiratory Complexes in myelin purified from either bovine or murine optic nerves. Western blot analyses on isolated myelin confirmed the expression of ND4L (subunit of Complex I), COX IV (subunit of Complex IV) and ß subunit of F1Fo-ATP synthase. Moreover, spectrophotometric and in-gel activity assays on isolated myelin, as well as histochemical activity assays on both bovine and murine transversal optic nerve sections showed that the respiratory Complexes are functional in myelin and are organized in a supercomplex. Expression of oxidative phosphorylation proteins was also evaluated on bovine optic nerve sections by confocal and transmission electron microscopy. Having excluded a mitochondrial contamination of isolated myelin and considering the results form in situ analyses, it is proposed that the oxidative phosphorylation machinery is truly resident in optic myelin sheath. Data may shed a new light on the unknown trophic role of myelin sheath. It may be energy supplier for the axon, explaining why in demyelinating diseases and neuropathies, myelin sheath loss is associated with axonal degeneration.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/biossíntese , Bainha de Mielina/metabolismo , Nervo Óptico/metabolismo , ATPases Translocadoras de Prótons/biossíntese , Trifosfato de Adenosina/biossíntese , Animais , Axônios/metabolismo , Bovinos , Masculino , Camundongos , Mitocôndrias/metabolismo , NADH Desidrogenase/biossíntese , Neuroglia/metabolismo , Fosforilação Oxidativa
20.
Br J Pharmacol ; 172(15): 3890-903, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917043

RESUMO

BACKGROUND AND PURPOSE: The rod outer segments (OS) of the retina are specialized organelles where phototransduction takes place. The mitochondrial electron transport complexes I-IV, cytochrome c and Fo F1 -ATP synthase are functionally expressed in the OS disks. Here, we have studied the effect of some polyphenolic compounds acting as inhibitors of mitochondrial ATPase/synthase activity on the OS ectopic Fo F1 - ATP synthase. The mechanism of apoptosis in the OS was also investigated studying the expression of cytochrome c, caspase 9 and 3 and Apaf-1. EXPERIMENTAL APPROACH: We prepared OS from fresh bovine retinae. Semi-quantitative Western blotting, confocal and electron microscopy, and cytofluorimetry were used along with biochemical analyses such as oximetry, ATP synthesis and hydrolysis. KEY RESULTS: Resveratrol and curcumin plus piperine inhibited ATP synthesis and oxygen consumption in the OS. Epigallocatechin gallate and quercetin inhibited ATP hydrolysis and oxygen consumption in the OS. Malondialdehyde and hydrogen peroxide were produced in respiring OS in the presence of substrates. Cytochrome c was located inside the disk membranes. Procaspase 9 and 3, as well as Apaf-1 were expressed in the OS. CONCLUSIONS AND IMPLICATIONS: These polyphenolic phytochemicals modulated the Fo F1 -ATP synthase activity of the the OS reducing production of reactive oxygen intermediates by the OS ectopic electron transport chain. Polyphenols decrease membrane peroxidation and cytochrome c release from disks, preventing the induction of caspase-dependent apoptosis in the OS Such effects are relevant in the design of protection against functional impairment of the OS following oxidative stress from exposure to intense illumination.


Assuntos
Fosforilação Oxidativa/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Segmento Externo da Célula Bastonete/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Alcaloides/farmacologia , Animais , Benzodioxóis/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Bovinos , Curcumina/farmacologia , Citocromos c/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Quercetina/farmacologia , Resveratrol , Segmento Externo da Célula Bastonete/metabolismo , Segmento Externo da Célula Bastonete/ultraestrutura , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA