Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233584

RESUMO

BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.

2.
Nat Commun ; 13(1): 3669, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760926

RESUMO

Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Humanos , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Mitocondriais/genética , Doenças Musculares
3.
Structure ; 25(12): 1839-1855.e11, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29153505

RESUMO

The discovery of ubistatins, small molecules that impair proteasomal degradation of proteins by directly binding to polyubiquitin, makes ubiquitin itself a potential therapeutic target. Although ubistatins have the potential for drug development and clinical applications, the lack of structural details of ubiquitin-ubistatin interactions has impeded their development. Here, we characterized a panel of new ubistatin derivatives using functional and binding assays. The structures of ubiquitin complexes with ubistatin B and hemi-ubistatin revealed direct interactions with ubiquitin's hydrophobic surface patch and the basic/polar residues surrounding it. Ubistatin B binds ubiquitin and diubiquitin tighter than a high-affinity ubiquitin receptor and shows strong preference for K48 linkages over K11 and K63. Furthermore, ubistatin B shields ubiquitin conjugates from disassembly by a range of deubiquitinases and by the 26S proteasome. Finally, ubistatin B penetrates cancer cells and alters the cellular ubiquitin landscape. These findings highlight versatile properties of ubistatins and have implications for their future development and use in targeting ubiquitin-signaling pathways.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Quinolinas/química , Ácidos Sulfanílicos/química , Ubiquitinas/química , Sítios de Ligação , Linhagem Celular , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Quinolinas/farmacologia , Saccharomyces cerevisiae/enzimologia , Ácidos Sulfanílicos/farmacologia , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/metabolismo
4.
PLoS One ; 7(7): e41680, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848564

RESUMO

Pyridoxal 5'-phosphate (PLP) is a cofactor for dozens of B(6) requiring enzymes. PLP reacts with apo-B(6) enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6) enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6) proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6) enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Piridoxal Quinase/antagonistas & inibidores , Piridoxal Quinase/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Domínio Catalítico , Ativação Enzimática , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Piridoxal Quinase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA