Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848567

RESUMO

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Assuntos
Lentinula , Filogenia , Ásia Oriental , Tailândia
2.
J Fungi (Basel) ; 7(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064437

RESUMO

Agaricomycetes fungi responsible for decay of wood and other lignocellulosic substrates constitute a valuable source of lignin-degrading enzymes. Among these enzymes, laccases (multi-copper oxidases) present remarkable biotechnological potential as environmentally friendly biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the only requirement. Laccases from saprotrophic Agaricales species have been much less studied than laccases from Polyporales, despite the fact that the former fungi are excellent sources of laccases. Here, the gene of a novel laccase of Agrocybe pediades, that is secreted by the fungus during lignocellulose degradation, was synthesised de novo and expressed in Saccharomyces cerevisiae using an improved signal peptide previously obtained and enzyme directed evolution. The characterization of the new laccase variants provided new insights on the contribution of different amino acid residues to modulate laccase production, catalytic activity or optimal pH. The selected double-mutated variant also showed interesting properties as a biocatalyst, such as the ability to oxidise a wide range of substrates, including high-redox potential mediators and recalcitrant organic dyes, improved activity at neutral pH and high tolerance to inhibitors. Finally, we demonstrate the existence of three N-glycosylation sites in the laccase and their distinct effect on the secretion or catalytic activity of the enzyme.

3.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33211093

RESUMO

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Assuntos
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidases/genética , Filogenia , Agaricales/enzimologia , Ecossistema , Família Multigênica , Peroxidases/metabolismo
4.
Sci Rep ; 10(1): 5250, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251355

RESUMO

Fungal plant pathogens remain a serious threat to the sustainable agriculture and forestry, despite the extensive efforts undertaken to control their spread. White root rot disease is threatening rubber tree (Hevea brasiliensis) plantations throughout South and Southeast Asia and Western Africa, causing tree mortality and severe yield losses. Here, we report the complete genome sequence of the basidiomycete fungus Rigidoporus microporus, a causative agent of the disease. Our phylogenetic analysis confirmed the position of R. microporus among the members of Hymenochaetales, an understudied group of basidiomycetes. Our analysis further identified pathogen's genes with a predicted role in the decay of plant cell wall polymers, in the utilization of latex components and in interspecific interactions between the pathogen and other fungi. We also detected putative horizontal gene transfer events in the genome of R. microporus. The reported first genome sequence of a tropical rubber tree pathogen R. microporus should contribute to the better understanding of how the fungus is able to facilitate wood decay and nutrient cycling as well as tolerate latex and utilize resinous extractives.


Assuntos
Proteínas Fúngicas/genética , Látex/metabolismo , Polyporales/genética , Polyporales/patogenicidade , Madeira/microbiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Enzimas/genética , Enzimas/metabolismo , Regulação Fúngica da Expressão Gênica , Transferência Genética Horizontal , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Interações Microbianas/genética , Filogenia , Polyporales/metabolismo , Metabolismo Secundário , Madeira/metabolismo
5.
Comb Chem High Throughput Screen ; 11(10): 807-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19075602

RESUMO

A mutant laccase from the Ascomycete Myceliophthora thermophila has been submitted to iterative cycles of combinatorial saturation mutagenesis through in vivo overlap extension in Saccharomyces cerevisiae. Over 180,000 clones were explored, among which the S510G mutant revealed a direct interaction between the conserved (509)VSG(511) tripeptide, located in the neighborhood of the T1 site, and the C-terminal plug. The K(m)(O)(2) value of the mutant increased 1.5-fold, and the electron transfer pathway between the reducing substrate and the T1 copper ion was altered, improving the catalytic efficiency towards non-phenolic and phenolic substrates by about 3- and 8-fold. Although the geometry at the T1 site was perturbed by the mutation, paradoxically the laccase redox potential was not significantly altered. Together, the results obtained in this study suggest that the (509)VSG(511) tripeptide may play a hitherto unrecognized role in regulating the traffic of oxygen through the C-terminal plug, the latter blocking access to the T2/T3 copper cluster in the native enzyme.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Lacase/genética , Lacase/metabolismo , Mutagênese/genética , Peptídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Técnicas de Química Combinatória , Sequência Conservada , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Cinética , Lacase/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Microb Cell Fact ; 7: 32, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19019256

RESUMO

Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis.Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.

7.
J Agric Food Chem ; 55(9): 3477-90, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17407317

RESUMO

Chemical modification of eucalypt lignin was investigated during kraft pulping and chlorine-free bleaching by comparing milled wood lignin, kraft lignin, and pulp enzymatic residual lignins. The syringyl-to-guaiacyl ratio (S/G) from analytical pyrolysis slightly changed during pulping and bleaching (S/G, 3-4) but was higher in the kraft lignin. Semiquantitative heteronuclear single quantum correlation (HSQC) nuclear magnetic resonance (NMR) showed that the relative amount of beta-O-4' (around 80% side chains) and resinol type substructures (15%) was slightly modified during pulping and oxygen delignification. However, a decrease of resinol substructures (to only 6%) was found after alkaline peroxide bleaching. The relative amount of surviving linkages in the highly phenolic kraft lignin was dramatically modified; resinols were predominant. Oxygen delignification did not change interunit linkages, but a relative increase of oxidized units was found in the HSQC aromatic region, in agreement with the small increase of pyrolysis markers with oxidized side chains. NMR heteronuclear multiple bond correlations showed that the oxidized units after oxygen delignification bore conjugated ketone groups.


Assuntos
Eucalyptus/química , Lignina/química , Madeira/química , Fenômenos Químicos , Físico-Química , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA