Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 39: 100400, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34146821

RESUMO

Although Accelerator Mass Spectrometry (AMS) offers unparalleled sensitivity by investigating the fate of 14C-labeled compounds within the organism, its widespread use in ADME (absorption, distribution, metabolism, excretion) studies is limited. Conventional approaches based on Liquid Scintillation Counting (LSC) are still preferred, in particular because of complexity and costs associated with AMS measurements. Progress made over the last decade towards more compact AMS systems increased the interest in a combustion-based AMS approach allowing the analysis of samples in gaseous form. Thus, a novel gas Double Trap Interface (DTI) was designed, providing high sample throughput for the analysis of biomedical samples. DTI allows the coupling of an Elemental Analyzer (EA) for sample combustion to the hybrid ion source of a MICADAS (MIni CArbon DAting System) AMS system. The performance was evaluated in two studies through the analysis of more than 1000 samples from 14C-labeled biomatrices and fractions collected after liquid chromatography (LC). The covered activity ranged from 1 to 1000 mBq/g for labeled biomatrices and from 1 to 10000 mBq/g(C) for LC fractions. The implemented routine allows automated measurements requiring less than 5 min per sample (12-13 analyses per hour) without the need for sample conversion to graphite.


Assuntos
Preparações Farmacêuticas , Farmacocinética , Radioisótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Marcação por Isótopo/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Contagem de Cintilação/métodos
2.
Drug Metab Dispos ; 48(10): 873-885, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32665418

RESUMO

Capmatinib (INC280), a highly selective and potent inhibitor of the MET receptor tyrosine kinase, has demonstrated clinically meaningful efficacy and a manageable safety profile in patients with advanced non-small-cell lung cancer harboring MET exon 14-skipping mutations. We investigated the absorption, distribution, metabolism, and excretion of capmatinib in six healthy male volunteers after a single peroral dose of 600 mg 14C-labeled capmatinib. The mass balance, blood and plasma radioactivity, and plasma capmatinib concentrations were determined along with metabolite profiles in plasma, urine, and feces. The metabolite structures were elucidated using mass spectrometry and comparing with reference compounds. The parent compound accounted for most of the radioactivity in plasma (42.9% ± 2.9%). The extent of oral absorption was estimated to be 49.6%; the Cmax of capmatinib in plasma was reached at 2 hours (median time to reach Cmax). The apparent mean elimination half-life of capmatinib in plasma was 7.84 hours. Apparent distribution volume of capmatinib during the terminal phase was moderate-to-high (geometric mean 473 l). Metabolic reactions involved lactam formation, hydroxylation, N-dealkylation, formation of a carboxylic acid, hydrogenation, N-oxygenation, glucuronidation, and combinations thereof. M16, the most abundant metabolite in plasma, urine, and feces was formed by lactam formation. Absorbed capmatinib was eliminated mainly by metabolism and subsequent biliary/fecal and renal excretion. Excretion of radioactivity was complete after 7 days. CYP phenotyping demonstrated that CYP3A was the major cytochrome P450 enzyme subfamily involved in hepatic microsomal metabolism, and in vitro studies in hepatic cytosol indicated that M16 formation was mainly catalyzed by aldehyde oxidase. SIGNIFICANCE STATEMENT: The absorption, distribution, metabolism, and excretion of capmatinib revealed that capmatinib had substantial systemic availability after oral administration. It was also extensively metabolized and largely distributed to the peripheral tissue. Mean elimination half-life was 7.84 hours. The most abundant metabolite, M16, was formed by imidazo-triazinone formation catalyzed by cytosolic aldehyde oxidase. Correlation analysis, specific inhibition, and recombinant enzymes phenotyping demonstrated that CYP3A is the major enzyme subfamily involved in the hepatic microsomal metabolism of [14C]capmatinib.


Assuntos
Aldeído Oxidase/metabolismo , Benzamidas/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Imidazóis/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Triazinas/farmacocinética , Administração Oral , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Biotransformação , Citosol/metabolismo , Voluntários Saudáveis , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imidazóis/administração & dosagem , Imidazóis/efeitos adversos , Absorção Intestinal , Masculino , Microssomos Hepáticos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Distribuição Tecidual , Triazinas/administração & dosagem , Triazinas/efeitos adversos
3.
Pharmacol Res Perspect ; 8(3): e00599, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32524755

RESUMO

Ribociclib (LEE011, Kisqali ®) is a highly selective small molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), which has been approved for the treatment of advanced or metastatic breast cancer. A human ADME study was conducted in healthy male volunteers following a single oral dose of 600 mg [14 C]-ribociclib. Mass balance, blood and plasma radioactivity, and plasma ribociclib concentrations were measured. Metabolite profiling and identification was conducted in plasma, urine, and feces. An assessment integrating the human ADME results with relevant in vitro and in vivo non-clinical data was conducted to provide an estimate of the relative contributions of various clearance pathways of the compound. Ribociclib is moderately to highly absorbed across species (approx. 59% in human), and is extensively metabolized in vivo, predominantly by oxidative pathways mediated by CYP3A4 (ultimately forming N-demethylated metabolite M4) and, to a lesser extent, by FMO3 (N-hydroxylated metabolite M13). It is extensively distributed in rats, based on QWBA data, and is eliminated rapidly from most tissues with the exception of melanin-containing structures. Ribociclib passed the placental barrier in rats and rabbits and into milk of lactating rats. In human, 69.1% and 22.6% of the radiolabeled dose were excreted in feces and urine, respectively, with 17.3% and 6.75% of the 14 C dose attributable to ribociclib, respectively. The remainder was attributed to numerous metabolites. Taking into account all available data, ribociclib is estimated to be eliminated by hepatic metabolism (approx. 84% of total), renal excretion (7%), intestinal excretion (8%), and biliary elimination (1%).


Assuntos
Aminopiridinas/farmacocinética , Antineoplásicos/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Purinas/farmacocinética , Administração Oral , Aminopiridinas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Cães , Feminino , Humanos , Lactação , Masculino , Placenta/metabolismo , Gravidez , Inibidores de Proteínas Quinases/administração & dosagem , Purinas/administração & dosagem , Coelhos , Ratos , Especificidade da Espécie , Distribuição Tecidual
4.
Pulm Pharmacol Ther ; 57: 101809, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31195091

RESUMO

Fevipiprant, a prostaglandin D2 receptor 2 antagonist, is in clinical development as a treatment for asthma. The goal of this study was to assess the potential of fevipiprant to cause drug-drug interactions (DDI) as a perpetrator, that is, by altering the pharmacokinetics (PK) of co-medications. In vitro drug interaction studies of clinically relevant drug metabolizing enzymes and transporters were conducted for fevipiprant and its acyl glucuronide (AG) metabolite. Comparison of Ki values with unbound systemic or portal vein steady-state plasma exposure of fevipiprant and its AG metabolite revealed the potential for inhibition of organic anion transporting polypeptide 1B1 (OATP1B1) transporters (R-value of 5.99), while other targets including cytochrome P450 enzymes were not, or only marginally, inhibited. Consequently, an open-label, two-part, two-period, single-sequence clinical study assessed the effect of fevipiprant 450 mg QD on the pharmacokinetics of simvastatin 20 mg and rosuvastatin 20 mg, two statins with different dependency in OATP1B1-mediated hepatic uptake, in healthy adult volunteers. The study also assessed the pharmacogenetics of the SLCO1B1 gene, which encodes OATP1B1. Clinically, fevipiprant 450 mg QD showed a low potential for interaction and increased the peak concentrations of simvastatin acid and rosuvastatin by 2.23- and 1.87-fold, respectively, with little or no impact on total exposure. Genotype analysis confirmed that SLCO1B1 genotype influences statin pharmacokinetics to a similar extent either with or without fevipiprant co-administration. In summary, fevipiprant at 450 mg QD has only minor liabilities as a perpetrator for DDI.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Ácidos Indolacéticos/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Piridinas/farmacologia , Rosuvastatina Cálcica/farmacocinética , Sinvastatina/farmacocinética , Adulto , Interações Medicamentosas , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos , Farmacogenética , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores
5.
Drug Metab Dispos ; 45(8): 900-907, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28566285

RESUMO

The human mass balance study is the definitive study for the assessment of absorption, distribution, metabolism, and excretion (ADME) properties of a new chemical entity in humans. Traditionally this has been carried out by the administration of radiolabeled drug substances, typically 14C or occasionally 3H, as detection methods for these isotopes allow the absolute quantification of drug-related material (DRM) in blood, plasma, and excreta. Coupled with the use of analytical techniques such as liquid chromatography-mass spectrometry, a picture of the metabolic fate of a compound can be elucidated. In this study, we demonstrate the capabilities of 19F nuclear magnetic resonance (NMR) spectroscopy, applied as an alternative to radiolabeling, for the determination of mass balance and for metabolite profiling of an orally administered fluorinated drug. To demonstrate the capabilities of NMR, the study was conducted on remaining samples from a 14C human mass balance study conducted on Alpelisib (BYL719), a compound in late stage development at Novartis for the treatment of solid tumors. Quantitative 14C data were used to cross-validate the data obtained by NMR. The data show that, using 19F NMR, comparable data can be obtained for key human ADME endpoints including mass balance, total DRM determination in plasma and metabolite profiling and identification in plasma and excreta. Potential scenarios where NMR could be employed as an alternative to radiolabeling for the conduct of an early human ADME study are discussed.


Assuntos
Radioisótopos de Carbono/química , Flúor/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Tiazóis/química , Tiazóis/metabolismo , Cromatografia Líquida/métodos , Humanos , Masculino , Espectrometria de Massas/métodos
6.
Drug Metab Dispos ; 45(7): 817-825, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442499

RESUMO

Fevipiprant is a novel oral prostaglandin D2 receptor 2 (DP2; also known as CRTh2) antagonist, which is currently in development for the treatment of severe asthma and atopic dermatitis. We investigated the absorption, distribution, metabolism, and excretion properties of fevipiprant in healthy subjects after a single 200-mg oral dose of [14C]-radiolabeled fevipiprant. Fevipiprant and metabolites were analyzed by liquid chromatography coupled to tandem mass spectrometry and radioactivity measurements, and mechanistic in vitro studies were performed to investigate clearance pathways and covalent plasma protein binding. Biotransformation of fevipiprant involved predominantly an inactive acyl glucuronide (AG) metabolite, which was detected in plasma and excreta, representing 28% of excreted drug-related material. The AG metabolite was found to covalently bind to human plasma proteins, likely albumin; however, in vitro covalent binding to liver protein was negligible. Excretion was predominantly as unchanged fevipiprant in urine and feces, indicating clearance by renal and possibly biliary excretion. Fevipiprant was found to be a substrate of transporters organic anion transporter 3 (OAT3; renal uptake), multidrug resistance gene 1 (MDR1; possible biliary excretion), and organic anion-transporting polypeptide 1B3 (OATP1B3; hepatic uptake). Elimination of fevipiprant occurs via glucuronidation by several uridine 5'-diphospho glucuronosyltransferase (UGT) enzymes as well as direct excretion. These parallel elimination pathways result in a low risk of major drug-drug interactions or pharmacogenetic/ethnic variability for this compound.


Assuntos
Hepatócitos/metabolismo , Ácidos Indolacéticos/farmacocinética , Microssomos Hepáticos/metabolismo , Piridinas/farmacocinética , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Administração Oral , Adolescente , Adulto , Biotransformação , Fezes/química , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Ácidos Indolacéticos/sangue , Ácidos Indolacéticos/urina , Masculino , Taxa de Depuração Metabólica , Metaboloma , Pessoa de Meia-Idade , Ligação Proteica , Piridinas/sangue , Piridinas/urina , Eliminação Renal , Distribuição Tecidual , Adulto Jovem
7.
Xenobiotica ; 45(2): 107-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25180976

RESUMO

1. 4-[2((1R,2R)-2-Hydroxycyclohexylamino)-benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide (BLZ945) is a small molecule inhibitor of CSF-1R kinase activity within osteoclasts designed to prevent skeletal related events in metastatic disease. Key metabolites were enzymatically and structurally characterized to understand the metabolic fate of BLZ945 and pharmacological implications. The relative intrinsic clearances for metabolites were derived from in vitro studies using human hepatocytes, microsomes and phenotyped with recombinant P450 enzymes. 2. Formation of a pharmacologically active metabolite (M9) was observed in human hepatocytes. The M9 metabolite is a structural isomer (diastereomer) of BLZ945 and is about 4-fold less potent. This isomer was enzymatically formed via P450 oxidation of the BLZ945 hydroxyl group, followed by aldo-keto reduction to the alcohol (M9). 3. Two reaction phenotyping approaches based on fractional clearances were applied to BLZ945 using hepatocytes and liver microsomes. The fraction metabolized (fm) or contribution ratio was determined for each metabolic reaction type (oxidation, glucuronidation or isomerization) as well as for each metabolite. The results quantitatively illustrate contribution ratios of the involved enzymes and pathways, e.g. the isomerization to metabolite M9 accounted for 24% intrinsic clearance in human hepatocytes. In summary, contribution ratios for the Phase I and Phase II pathways can be determined in hepatocytes.


Assuntos
Benzotiazóis/metabolismo , Hepatócitos/enzimologia , Microssomos Hepáticos/enzimologia , Ácidos Picolínicos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Benzotiazóis/química , Benzotiazóis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Redes e Vias Metabólicas , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Drug Metab Dispos ; 43(1): 126-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339109

RESUMO

Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17ß-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 µM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17ß-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.


Assuntos
Catecóis/metabolismo , Glutationa/metabolismo , Desintoxicação Metabólica Fase II/fisiologia , Pele/metabolismo , Acetilação , Adulto , Idoso , Biotransformação/fisiologia , Diclofenaco/metabolismo , Feminino , Glucuronídeos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Naftóis/metabolismo , Sulfatos/metabolismo
9.
Drug Metab Dispos ; 42(9): 1514-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989890

RESUMO

Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 are drug transporters mediating the active hepatic uptake of their substrates. Because they exhibit overlapping substrate specificities, the contribution of each isoform to the net hepatic uptake needs to be considered when predicting drug-drug interactions. The relative contribution of OATP1B1- and OATP1B3-mediated uptake of statins into hepatocytes was estimated based on either relative transporter protein expression data or relative activity data. Therefore, kinetics of eight statins and OATP1B1- and OATP1B3-specific reference substrates was determined in OATP1B1- and OATP1B3-expressing human embryonic kidney 293 cells and in human cryopreserved hepatocytes. Absolute OATP1B1 and OATP1B3 protein abundance was determined by liquid chromatography-tandem mass spectrometry in all expression systems. Transporter activity data generated in recombinant cell lines were extrapolated to hepatocyte values using relative transporter expression factors (REF) or relative activity factors (RAF). Our results showed a pronounced OATP1B1 and comparatively low OATP1B3 protein expression in the investigated hepatocyte lot. Based on REF scaling, we demonstrated that the active hepatic uptake clearances of reference substrates, atorvastatin, pravastatin, rosuvastatin, and simvastatin were well predicted within twofold error, demonstrating that OATP1B1 and OATP1B3 were major contributors. For other statins, the net hepatic uptake clearance was underpredicted, suggesting the involvement of other hepatic uptake transporters. Summarized, we showed that REF- and RAF-based predictions were highly similar, indicating a direct transporter expression-activity relationship. Moreover, we demonstrated that the REF-scaling method provided a powerful tool to quantitatively assess the transporter-specific contributions to the net uptake clearance of statins in hepatocytes.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Interações Medicamentosas/fisiologia , Células HEK293 , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Proteínas de Membrana Transportadoras/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
10.
Biochem Pharmacol ; 84(8): 1096-102, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22902721

RESUMO

Telaprevir is a new, direct-acting antiviral drug that has been approved for the treatment of chronic hepatitis C viral infection. First data on drug-drug interactions with co-medications such as cyclosporine, tacrolimus and atorvastatin have been reported recently. Drug transporting proteins have been shown to play an important role in clinically observed drug-drug interactions. The aim of this study was therefore to systematically investigate the potential of telaprevir to inhibit drug transporting proteins. The effect of telaprevir on substrate uptake mediated by drug transporters located in human kidney and liver was investigated on a functional level in HEK293 cell lines that over-express single transporter. Telaprevir was shown to exhibit significant inhibition of the human renal drug transporters OCT2 and MATE1 with IC(50) values of 6.4 µM and 23.0 µM, respectively, whereas no inhibitory effect on OAT1 and OAT3 mediated transport by telaprevir was demonstrated. Liver drug transporters were inhibited with an IC(50) of 2.2 µM for OATP1B1, 6.8 µM for OATP1B3 and 20.7 µM for OCT1. Our data show that telaprevir exhibited significant potential to inhibit human drug transporters. In view of the inhibitory potential of telaprevir, clinical co-administration of telaprevir together with drugs that are substrates of renal or hepatic transporters should be carefully monitored.


Assuntos
Antivirais/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligopeptídeos/farmacologia , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Espectrometria de Massas , Transportadores de Ânions Orgânicos/metabolismo
11.
J Clin Pharmacol ; 48(11): 1323-38, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18784280

RESUMO

This study investigated the potential pharmacokinetic interaction between the direct renin inhibitor aliskiren and modulators of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Aliskiren stimulated in vitro P-glycoprotein ATPase activity in recombinant baculovirus-infected Sf9 cells with high affinity (K(m) 2.1 micromol/L) and was transported by organic anion-transporting peptide OATP2B1-expressing HEK293 cells with moderate affinity (K(m) 72 micromol/L). Three open-label, multiple-dose studies in healthy subjects investigated the pharmacokinetic interactions between aliskiren 300 mg and digoxin 0.25 mg (n = 22), atorvastatin 80 mg (n = 21), or ketoconazole 200 mg bid (n = 21). Coadministration with aliskiren resulted in changes of <30% in AUC(tau) and C(max,ss) of digoxin, atorvastatin, o-hydroxy-atorvastatin, and rho-hydroxy-atorvastatin, indicating no clinically significant interaction with P-glycoprotein or CYP3A4 substrates. Aliskiren AUC(tau) was significantly increased by coadministration with atorvastatin (by 47%, P < .001) or ketoconazole (by 76%, P < .001) through mechanisms most likely involving transporters such as P-glycoprotein and organic anion-transporting peptide and possibly through metabolic pathways such as CYP3A4 in the gut wall. These results indicate that aliskiren is a substrate for but not an inhibitor of P-glycoprotein. On the basis of the small changes in exposure to digoxin and atorvastatin and the <2-fold increase in exposure to aliskiren during coadministration with atorvastatin and ketoconazole, the authors conclude that the potential for clinically relevant drug interactions between aliskiren and these substrates and/or inhibitors of P-glycoprotein/CPY3A4/OATP is low.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Amidas/farmacocinética , Antifúngicos/farmacocinética , Digoxina/farmacocinética , Fumaratos/farmacocinética , Ácidos Heptanoicos/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Cetoconazol/farmacocinética , Pirróis/farmacocinética , Renina/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Adulto , Amidas/efeitos adversos , Animais , Antifúngicos/efeitos adversos , Atorvastatina , Células CACO-2 , Linhagem Celular , Citocromo P-450 CYP3A/metabolismo , Digoxina/efeitos adversos , Interações Medicamentosas , Feminino , Fumaratos/efeitos adversos , Ácidos Heptanoicos/efeitos adversos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Cetoconazol/efeitos adversos , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Pirróis/efeitos adversos , Distribuição Tecidual , Adulto Jovem
12.
Pharmacol Res ; 57(3): 214-22, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337118

RESUMO

Imatinib (Glivec, Gleevec, STI571) is a small tyrosine kinase inhibitor that is currently in phase II clinical trials in patients with recurrent glioblastoma. Its therapeutic benefit is minimal, although it is greater in some patients when combined with hydroxyurea. Imatinib is transported by human and rodent ATP-binding cassette (ABC) transporters like P-glycoprotein (Pgp) and the breast cancer resistance protein (BCRP). We have investigated whether ABC transporters determine the pharmacokinetics of imatinib and its pharmacological active metabolite CGP74588 in rat C6 glioma cells. ABC transporter expressions were measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). C6 cells express high concentrations of the Pgp-encoding gene Mdr1b and a 10-fold smaller amount of the Pgp-encoding gene Mdr1a. The relative expression of ABC transporter genes are: Mdr1b>Mrp4>Mrp1>Mrp5>Mdr1a>Mrp3>Mrp2>Bcrp. The accumulation of imatinib into C6 cells increased linearly with the extracellular concentration of imatinib (0.5-50microM) and was not increased by zosuquidar (selective Pgp inhibitor) or elacridar (inhibitor of both Pgp and Bcrp). In contrast, there was less CGP74588 than imatinib in C6 cells and its concentration increased with the extracellular concentration in a sigmoid fashion. Lastly, 10microM valspodar (selective Pgp inhibitor), elacridar and zosuquidar all increased the accumulation of CGP74588 by 2.5-fold. Thus CGP74588 is readily transported by the Pgp in rat C6 gliomas cells, which raises the question of the role of Pgp in the resistance of recurrent glioblastomas to imatinib.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Piperazinas/metabolismo , Pirimidinas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Algoritmos , Animais , Área Sob a Curva , Benzamidas , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Genes MDR , Mesilato de Imatinib , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Neurochem ; 102(6): 1749-1757, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17696988

RESUMO

Imatinib, a protein tyrosine kinase inhibitor, may prevent the growth of glioblastoma cells. Unfortunately, its brain distribution is restricted by p-glycoprotein (p-gp or multidrug resistance protein Mdr1a), and probably by breast cancer resistance protein (Bcrp1), two efflux pumps expressed at the blood-brain barrier (BBB). We have used in situ brain perfusion to investigate the mechanisms of imatinib transport across the mouse BBB. The brain uptake of imatinib in wild-type mice was limited by saturable efflux processes. The inhibition of p-gp, by valspodar and zosuquidar, increased imatinib uptake (2.5-fold), as did the deficiency of p-gp in Mdr1a/1b(-/-) mice (5.5-fold). Perfusing imatinib with the p-gp/Bcrp1 inhibitor, elacridar, enhanced the brain uptake of imatinib in wild-type (4.1-fold) and Mdr1a/1b(-/-) mice (1.2-fold). However, the brain uptake of imatinib was similar in wild-type and Bcrp1(-/-) mice when it was perfused at a non-saturating concentration. The brain uptake of CGP74588, an active metabolite of imatinib, was low. It was increased by perfusion with elacridar (twofold), but not with valspodar and zosuquidar. CGP74588 uptake was 1.5 times greater in Bcrp1(-/-) mice than in wild-type mice. These data suggest that imatinib transport at the mouse BBB is limited by p-gp and probably by Bcrp1, and that CGP74588 transport is restricted by Bcrp1.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Piperazinas/metabolismo , Pirimidinas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Animais , Antineoplásicos/metabolismo , Benzamidas , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Ciclosporinas/farmacologia , Dibenzocicloeptenos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Mesilato de Imatinib , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Knockout , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Quinolinas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia
14.
Pharm Res ; 24(9): 1720-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17380257

RESUMO

PURPOSE: The selective protein tyrosine kinase inhibitor, imatinib, inhibits the growth of glioma cells in preclinical models, but its poor brain distribution limits its efficacy in patients. P-glycoprotein (P-gp, rodent Mdr1a/1b or Abcb1a/1b) and Breast cancer resistance protein (rodent Bcrp1 or Abcg2) were suggested to restrict the delivery of imatinib to the brain. This study evaluates the effect of administering selective inhibitors of these transporters together with imatinib on the systemic and cerebral disposition of imatinib in mice. MATERIALS AND METHODS: Wild-type, Mdr1a/1b(-/-) and Bcrp1(-/-) mice were given imatinib intravenously, either alone, or with valspodar, zosuquidar (P-gp inhibitors), or elacridar (a P-gp and Bcrp1 inhibitor). The blood and brain concentrations of [(14)C]imatinib and its radioactive metabolites were determined. RESULTS: The blockade of P-gp by valspodar or zosuquidar (>3 mg/kg) enhanced the brain uptake of imatinib ( approximately 4-fold) in wild-type mice, but not that of its metabolites. Blockade of both P-gp and Bcrp1 by elacridar (>3 mg/kg) produced significantly greater brain penetration of imatinib (9.3-fold) and its metabolites (2.8-fold). In contrast, only the lack of P-gp enhanced imatinib brain penetration (6.4-fold) in knockout mice. These results of brain uptake correlated reasonably well with those obtained previously by our group using in situ brain perfusion. CONCLUSIONS: Imatinib and its metabolites penetrate into the brain poorly and their penetration is limited by P-gp and (probably) Bcrp1. Administering imatinib together with P-gp (and Bcrp1) transporter inhibitors such as elacridar may improve the delivery of imatinib to the brain, making it potentially more effective against malignant gliomas.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Ciclosporinas/farmacologia , Dibenzocicloeptenos/farmacologia , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Quinolinas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Benzamidas , Barreira Hematoencefálica , Radioisótopos de Carbono , Mesilato de Imatinib , Masculino , Camundongos
15.
Drug Metab Dispos ; 34(12): 1945-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16936068

RESUMO

The combination of imatinib mesylate and hydroxyurea provides a therapeutic benefit in patients with glioblastoma, although each drug is not effective when used alone. The increase of brain delivery of one or both drugs has been suggested to be a potential cause of this therapeutic benefit. The cross-influence of hydroxyurea and imatinib on their respective brain distribution was examined in mice and rats. We used in situ brain perfusion in mice to determine whether these two drugs have an influence on their respective initial transport across the blood-brain barrier. The brain penetration of hydroxyurea, assessed by its brain uptake clearance, Knet, was low in mice (approximately 0.10 microl/g/s) and not modified by coperfusion of imatinib (0.5-500 microM). Likewise, the brain penetration of imatinib was low (Knet, 1.39 +/- 0.17 microl/g/s) and not modified by direct coperfusion of hydroxyurea (0.2-1000 microM) or by intravenous pretreatment with 15 or 1000 mg/kg hydroxyurea. We also examined a potential time-dependent influence of hydroxyurea on imatinib brain distribution after sustained subcutaneous administration in rats using an implantable osmotic pump. The brain penetration of imatinib in rats increased with time, approximately 1.6-fold (p < 0.01) after 7 and 14 days' infusion of imatinib (3 mg/day) with or without hydroxyurea (15 mg/day), and was not influenced by hydroxyurea. The results of these two sets of experiments indicate that hydroxyurea has no significant influence on the brain distribution of imatinib in mice and rats.


Assuntos
Barreira Hematoencefálica/metabolismo , Hidroxiureia/farmacologia , Hidroxiureia/farmacocinética , Piperazinas/farmacologia , Piperazinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzamidas , Transporte Biológico , Encéfalo/metabolismo , Glioblastoma , Mesilato de Imatinib , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Wistar
16.
Drug Metab Dispos ; 34(6): 971-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16531476

RESUMO

Deferasirox (Exjade, ICL670) is an orally active iron chelator. Two molecules of deferasirox can form a complex with ferric iron (Fe-[ICL670]2) that can be excreted, reducing body iron overload. The blood binding parameters across species and the interaction with human serum albumin were analyzed for deferasirox and its iron complex. Both molecules were very highly bound to plasma proteins in all the tested species with unbound fractions in plasma in the range of 0.4 to 1.8% and 0.2 to 1.2% for deferasirox and Fe-[ICL670]2, respectively; binding of the iron complex was either similar or higher in all the species. The high plasma protein binding was in line with a distribution mainly into the plasma fraction of blood; the fraction in plasma was around 100% for Fe-[ICL670]2 in all the species and 65 to 95% for deferasirox depending on the species. Investigations with isolated proteins pointed to serum albumin as the principal binding protein for deferasirox and its iron complex in human plasma. Competition binding experiments indicated that deferasirox at high concentrations displaced markers from the two main drug binding sites of human albumin, whereas Fe-[ICL670]2 displaced only warfarin. In the context of the pharmacokinetic properties of deferasirox and Fe-[ICL670]2, the data indicate the importance of plasma protein binding for their disposition and support a comparison of the pharmacokinetics of deferasirox and its iron complex across species. The low likelihood of clinically relevant drug displacement by deferasirox in plasma is discussed.


Assuntos
Benzoatos/metabolismo , Compostos Ferrosos/metabolismo , Quelantes de Ferro/metabolismo , Albumina Sérica/metabolismo , Triazóis/metabolismo , Animais , Benzoatos/sangue , Benzoatos/química , Ligação Competitiva , Callithrix , Deferasirox , Diazepam/sangue , Diazepam/metabolismo , Cães , Feminino , Compostos Ferrosos/sangue , Compostos Ferrosos/química , Humanos , Técnicas In Vitro , Masculino , Camundongos , Ligação Proteica , Coelhos , Ratos , Triazóis/sangue , Triazóis/química , Varfarina/sangue , Varfarina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA