Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766189

RESUMO

Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.

2.
Sci Adv ; 10(12): eadn4649, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517960

RESUMO

Genomic rearrangements are a hallmark of most childhood tumors, including medulloblastoma, one of the most common brain tumors in children, but their causes remain largely unknown. Here, we show that PiggyBac transposable element derived 5 (Pgbd5) promotes tumor development in multiple developmentally accurate mouse models of Sonic Hedgehog (SHH) medulloblastoma. Most Pgbd5-deficient mice do not develop tumors, while maintaining normal cerebellar development. Ectopic activation of SHH signaling is sufficient to enforce cerebellar granule cell progenitor-like cell states, which exhibit Pgbd5-dependent expression of distinct DNA repair and neurodevelopmental factors. Mouse medulloblastomas expressing Pgbd5 have increased numbers of somatic structural DNA rearrangements, some of which carry PGBD5-specific sequences at their breakpoints. Similar sequence breakpoints recurrently affect somatic DNA rearrangements of known tumor suppressors and oncogenes in medulloblastomas in 329 children. This identifies PGBD5 as a medulloblastoma mutator and provides a genetic mechanism for the generation of oncogenic DNA rearrangements in childhood cancer.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Animais , Camundongos , Meduloblastoma/genética , Transposases/genética , Transposases/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Mutagênese , Neoplasias Cerebelares/genética
3.
Cancer Discov ; 14(6): 965-981, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315003

RESUMO

Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE: Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Piridonas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Piridonas/uso terapêutico , Piridonas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Animais , Camundongos , Compostos de Bifenilo/uso terapêutico , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Proteína SMARCB1/genética , Benzamidas/uso terapêutico , Benzamidas/farmacologia , Mutação
4.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36798379

RESUMO

Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.

5.
Cell Genom ; 2(4): 100112, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36776527

RESUMO

Complex somatic genomic rearrangements and copy number alterations are hallmarks of nearly all cancers. We have developed an algorithm, LINX, to aid interpretation of structural variant and copy number data derived from short-read, whole-genome sequencing. LINX classifies raw structural variant calls into distinct events and predicts their effect on the local structure of the derivative chromosome and the functional impact on affected genes. Visualizations facilitate further investigation of complex rearrangements. LINX allows insights into a diverse range of structural variation events and can reliably detect pathogenic rearrangements, including gene fusions, immunoglobulin enhancer rearrangements, intragenic deletions, and duplications. Uniquely, LINX also predicts chained fusions that we demonstrate account for 13% of clinically relevant oncogenic fusions. LINX also reports a class of inactivation events that we term homozygous disruptions that may be a driver mutation in up to 9% of tumors and may frequently affect PTEN, TP53, and RB1.

6.
Cell Genom ; 2(6): 100139, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778136

RESUMO

Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.

7.
Genome Biol ; 22(1): 202, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253237

RESUMO

GRIDSS2 is the first structural variant caller to explicitly report single breakends-breakpoints in which only one side can be unambiguously determined. By treating single breakends as a fundamental genomic rearrangement signal on par with breakpoints, GRIDSS2 can explain 47% of somatic centromere copy number changes using single breakends to non-centromere sequence. On a cohort of 3782 deeply sequenced metastatic cancers, GRIDSS2 achieves an unprecedented 3.1% false negative rate and 3.3% false discovery rate and identifies a novel 32-100 bp duplication signature. GRIDSS2 simplifies complex rearrangement interpretation through phasing of structural variants with 16% of somatic calls phasable using paired-end sequencing.


Assuntos
Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Neoplasias/genética , Software , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma Humano , Genômica , Humanos , Metástase Neoplásica , Neoplasias/patologia
8.
Bioinformatics ; 37(19): 3115-3119, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973999

RESUMO

MOTIVATION: Integration of viruses into infected host cell DNA can cause DNA damage and disrupt genes. Recent cost reductions and growth of whole genome sequencing has produced a wealth of data in which viral presence and integration detection is possible. While key research and clinically relevant insights can be uncovered, existing software has not achieved widespread adoption, limited in part due to high computational costs, the inability to detect a wide range of viruses, as well as precision and sensitivity. RESULTS: Here, we describe VIRUSBreakend, a high-speed tool that identifies viral DNA presence and genomic integration. It utilizes single breakends, breakpoints in which only one side can be unambiguously placed, in a novel virus-centric variant calling and assembly approach to identify viral integrations with high sensitivity and a near-zero false discovery rate. VIRUSBreakend detects viral integrations anywhere in the host genome including regions such as centromeres and telomeres unable to be called by existing tools. Applying VIRUSBreakend to a large metastatic cancer cohort, we demonstrate that it can reliably detect clinically relevant viral presence and integration including HPV, HBV, MCPyV, EBV and HHV-8. AVAILABILITY AND IMPLEMENTATION: VIRUSBreakend is part of the Genomic Rearrangement IDentification Software Suite (GRIDSS). It is available under a GPLv3 license from https://github.com/PapenfussLab/VIRUSBreakend. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

9.
Nat Commun ; 12(1): 1434, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664264

RESUMO

Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression.


Assuntos
Aneuploidia , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Progressão da Doença , Exoma/genética , Humanos , Mutação INDEL/genética , Melanócitos/patologia , Mutação Puntual/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Melanoma Maligno Cutâneo
10.
J Cancer Res Ther ; 16(4): 950-954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32930150

RESUMO

Despite recent advances in treatment with multidrug chemotherapy regimens, outcomes of patients with advanced pancreatic ductal adenocarcinoma (PDAC) remain very poor. Treatment with targeted therapies has shown marginal benefits due to intrinsic or acquired resistance. Actionable mutations, while detected infrequently in patients with PDAC, are becoming increasingly used in personalized medicine. Here, we describe an epidermal growth factor receptor (EGFR)-activating mutation (E746_T751>VP) to erlotinib, a first-generation tyrosine kinase inhibitor (TKI), in a patient with metastatic PDAC. After an initial partial response to erlotinib for 12 months, the patient's disease progressed with emergence of the EGFR A647T mutation. Certainly, the patient also progressed after switching therapy to a third-generation EGFR TKI (osimertinib). This case illustrates the posttreatment evolution of EGFR A647T-mediated resistance to the first- and third-generation TKIs. To our knowledge, this is the first case to report the aforementioned activating and resistance-mediated mutations. In summary, genomic analysis performed in this patient with PDAC on the tumor biopsy and peripheral blood provided tools to understand mechanisms of response and resistance to targeted therapy with EFGR TKIs.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Cloridrato de Erlotinib/uso terapêutico , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Idoso , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico
11.
J Gastrointest Oncol ; 9(3): 416-424, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29998006

RESUMO

BACKGROUND: The correlation between DPYD*9A (c.85T>C) genotype and dihydropyrimidine dehydrogenase (DPD) deficiency clinical phenotype is controversial. Reference laboratories either did not perform DPYD*9A genotyping or have stopped DPYD*9A genotyping and limited genotyping to high-risk variants (DPYD*2A, DPYD*13 and DPYD*9B) only. This study explored DPYD*9A genotype and clinical phenotype correlation in patients with gastrointestinal (GI) malignancies treated with fluoropyrimidines. METHODS: Between 2011 and 2017, 67 patients with GI malignancies were genotyped for DPYD variants. Fluoropyrimidines-associated toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 3.0). Fisher's exact test was used for statistical analysis. RESULTS: DPYD variants were identified in 17 out of 67 (25%) patients. One patient was homozygous for DPYD*9A variant and one patient was double heterozygous for DPYD*9A and DPYD*9B variants. In patients with identified DPYD variants, 13/17 (76%) patients had DPYD*9A variant, 3/17 (18%) patients had DPYD*2A variant and 2/17 (12%) patient had DPYD*9B variant. Only patients genotyped prior to 2015 were genotyped for DPYD*9A variant (N=28). Of those, 13/28 patients (46%) had DPYD*9A variant. Grade 3-4 diarrhea was associated with DPYD*9A variant in patients treated with full dose fluoropyrimidines (P=0.0055). CONCLUSIONS: In our cohort, DPYD*9A variant was the most common diagnosed variant. The correlation between DPYD*9A genotype and DPD deficiency in clinical phenotype was noticeable in patients who received full dose fluoropyrimidines as they all experienced grade 3-4 toxicities (diarrhea).

12.
Genome Res ; 28(5): 726-738, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618486

RESUMO

Genomic rearrangements are common in cancer, with demonstrated links to disease progression and treatment response. These rearrangements can be complex, resulting in fusions of multiple chromosomal fragments and generation of derivative chromosomes. Although methods exist for detecting individual fusions, they are generally unable to reconstruct complex chained events. To overcome these limitations, we adopted a new optical mapping approach, allowing megabase-length genome maps to be reconstructed and rearranged genomes to be visualized without loss of integrity. Whole-genome mapping (Bionano Genomics) of a well-studied highly rearranged liposarcoma cell line resulted in 3338 assembled consensus genome maps, including 72 fusion maps. These fusion maps represent 112.3 Mb of highly rearranged genomic regions, illuminating the complex architecture of chained fusions, including content, order, orientation, and size. Spanning the junction of 147 chromosomal translocations, we found a total of 28 Mb of interspersed sequences that could not be aligned to the reference genome. Traversing these interspersed sequences using short-read sequencing breakpoint calls, we were able to identify and place 399 sequencing fragments within the optical mapping gaps, thus illustrating the complementary nature of optical mapping and short-read sequencing. We demonstrate that optical mapping provides a powerful new approach for capturing a higher level of complex genomic architecture, creating a scaffold for renewed interpretation of sequencing data of particular relevance to human cancer.


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genoma Humano/genética , Neoplasias/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Fusão Gênica , Rearranjo Gênico , Haplótipos , Humanos , Modelos Genéticos , Análise de Sequência de DNA/métodos
13.
Endocr Relat Cancer ; 25(1): 1-9, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974544

RESUMO

Pheochromocytomas (PC) and paragangliomas (PGL) are endocrine tumors for which the genetic and clinicopathological features of metastatic progression remain incompletely understood. As a result, the risk of metastasis from a primary tumor cannot be predicted. Early diagnosis of individuals at high risk of developing metastases is clinically important and the identification of new biomarkers that are predictive of metastatic potential is of high value. Activation of TERT has been associated with a number of malignant tumors, including PC/PGL. However, the mechanism of TERT activation in the majority of PC/PGL remains unclear. As TERT promoter mutations occur rarely in PC/PGL, we hypothesized that other mechanisms - such as structural variations - may underlie TERT activation in these tumors. From 35 PC and four PGL, we identified three primary PCs that developed metastases with elevated TERT expression, each of which lacked TERT promoter mutations and promoter DNA methylation. Using whole genome sequencing, we identified somatic structural alterations proximal to the TERT locus in two of these tumors. In both tumors, the genomic rearrangements led to the positioning of super-enhancers proximal to the TERT promoter, that are likely responsible for the activation of the normally tightly repressed TERT expression in chromaffin cells.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Biomarcadores Tumorais/genética , Mutação , Paraganglioma/genética , Feocromocitoma/genética , Regiões Promotoras Genéticas , Telomerase/genética , Neoplasias das Glândulas Suprarrenais/secundário , Metilação de DNA , Predisposição Genética para Doença , Humanos , Paraganglioma/patologia , Feocromocitoma/patologia , Prognóstico , Sequenciamento Completo do Genoma
15.
Genome Res ; 27(12): 2050-2060, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097403

RESUMO

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.


Assuntos
Rearranjo Gênico , Genômica/métodos , Software , Linhagem Celular , Simulação por Computador , Genoma , Variação Estrutural do Genoma , Humanos , Neoplasias/genética , Plasmodium falciparum/genética , Sensibilidade e Especificidade
16.
Adv Exp Med Biol ; 924: 139-146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753035

RESUMO

Identifying circulating tumour DNA (ctDNA) for monitoring of cancer therapy is dependent on the development of readily designed, sensitive cancer-specific DNA markers. Genomic rearrangements that are present in the vast majority of cancers provide such markers.Tumour DNA isolated from two fresh-frozen lung tumours underwent whole genome sequencing. Genomic rearrangements were detected using a new computational algorithm, GRIDSS. Four genomic rearrangements from each tumour were chosen for further study using rearrangement-specific primers. Six of the eight rearrangements tested were identified as tumour-specific, the remaining two were present in the germline. ctDNA was quantified using digital PCR for the tumour genomic rearrangements in patient blood. Interestingly, one of the patients had no detectable ctDNA either prior to or post surgery although the rearrangements were readily detectable in the tumour DNA.This study demonstrates the feasibility of using digital PCR based on genomic rearrangements for the monitoring of minimal residual disease. In addition, whole genome sequencing provided further information enabling therapeutic choices including the identification of a cryptic EGFR exon 19 deletion in one patient and the identification of a high somatic mutation load in the other patient. This approach can be used as a model for all cancers with rearranged genomes.


Assuntos
DNA de Neoplasias/genética , Rearranjo Gênico , Genoma Humano/genética , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA de Neoplasias/sangue , Receptores ErbB/genética , Estudos de Viabilidade , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Mutação , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA