Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Caries Res ; 55(6): 594-602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34670214

RESUMO

The effect of solutions and gels containing a sugarcane-derived cystatin (CaneCPI-5) on the protection against enamel and dentin erosion in vitro was evaluated. Bovine enamel and dentin specimens were divided into 2 groups (n = 135 and 153/group for enamel and dentin, respectively) that were treated with solutions or chitosan gels containing 0.1 or 0.25 mg/mL CaneCPI-5. The positive controls for solutions and gels were Elmex Erosion Protection™ solution and NaF gel (12,300 ppm F), respectively. Deionized water and chitosan gel served as controls, respectively. The solutions were first applied on the specimens for 1 min and the gels for 4 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH cycling protocol 4 times/day for 7 days (0.1% citric acid pH 2.5/90 s, artificial saliva/2 h, and artificial saliva overnight). The solutions and gels were applied again during pH cycling, 2 times/day for 1 min and 4 min, respectively, after the first and last erosive challenges. Enamel and dentin losses (µm) were assessed by contact profilometry. Data were analyzed by 2-way ANOVA and Tukey's test (p < 0.05). All the treatments significantly reduced enamel and dentin loss in comparison with controls. Both CaneCPI-5 concentrations had a similar protective effect against enamel erosion, but only the higher concentration was as effective against dentin erosion as the positive control. Regarding the vehicles, only the 0.1 mg/mL gel performed worse than the positive control for dentin. CaneCPI-5 reduced enamel and dentin erosion to a similar extent as the fluoride-containing vehicles. However, dentin requires higher CaneCPI-5 concentrations, in the case of gels. Solutions or gels containing CaneCPI-5 might be a new approach to protect against dental erosion.


Assuntos
Cistatinas , Saccharum , Erosão Dentária , Animais , Bovinos , Esmalte Dentário , Dentina , Géis , Humanos , Fluoreto de Sódio , Erosão Dentária/prevenção & controle
2.
Biofouling ; 37(1): 109-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588651

RESUMO

The antimicrobial and anticaries effects of CaneCPI-5 were evaluated. Ninety bovine enamel samples were treated for 60 s with either phosphate-buffered-saline (PBS), 0.12% chlorhexidine (CHX), 0.05 mg ml-1 CaneCPI-5, 0.1 mg ml-1 CaneCPI-5 or 0.5 mg ml-1 CaneCPI-5. They were incubated with inoculum (human saliva + McBain's saliva) for the first 8 h. From then until the end of the experiment, the enamel was exposed to McBain saliva with sucrose and, once a day, for 5 days, they were treated with the solutions. At the end of the experimental period, resazurin and viable plate count assays were performed. Enamel demineralization was also measured. All concentrations of CaneCPI-5 and CHX significantly reduced the activity of biofilms compared with PBS. For viable plate counts, all treatments similarly reduced the lactobacilli and total streptococci; for the mutans streptococci, 0.05 mg ml-1 CaneCPI-5 performed better than CHX. All CaneCPI-5 concentrations significantly reduced the integrated mineral loss. This study represents the first step regarding the use of CaneCPI-5 within the concept of acquired enamel pellicle and biofilm engineering to prevent dental caries.


Assuntos
Cistatinas , Cárie Dentária , Saccharum , Desmineralização do Dente , Animais , Biofilmes , Bovinos , Cárie Dentária/prevenção & controle , Humanos , Saliva , Streptococcus mutans
3.
Swiss Dent J ; 131(5): 410-416, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33515229

RESUMO

This study evaluated the antimicrobial (anti-biofilm) and anti-caries (enamel demineralization prevention) effects of a new cystatin derived from sugarcane (CaneCPI-5). Microcosm biofilm was produced on bovine enamel specimens (4 x 4 mm; n=48) from a mixture of human saliva and McBain saliva at the first 8 h. From this moment until the end of the experiment, the enamel specimens were exposed to lsaMcBain saliva containing 0.2% sucrose and, once a day, they were treated with the test solutions for 1 min. This treatment was performed for 5 days. The solutions evaluated were: PBS (negative control), 0.12% chlorhexidine (positive control), 0.1 mg/ml CaneCPI-5 and 1.0 mg/ml CaneCPI-5. The biofilm viability was determined by fluorescence using confocal microscopy and the enamel demineralization was quantified using transverse microradiography (TMR). The data were analyzed by ANOVA/Tukey or Kruskal-Wallis/Dunn tests for biofilm and enamel, respectively (p<0.05). With respect to the antimicrobial effect, all treatment solutions significantly reduced the biofilm viability compared with PBS. The best antimicrobial effect was found for 1.0 mg/ml CaneCPI-5 (82.37±10.01% dead bacteria) that significantly differed from 0.12% chlorhexidine (73.13±15.07% dead bacteria). For the anti-caries effect, only 0.12% chlorhexidine (ΔZ: 2610, 1683-4343) performed significantly better than PBS (ΔZ: 8030, 7213-9115), but 0.12% chlorhexidine did not significantly differ from 0.1 mg/ml Cane-CPI-5. Under this experimental model, CaneCPI-5 significantly reduced the biofilm viability, but this effect was not reflected on its anti-caries potential.


Assuntos
Anti-Infecciosos , Cistatinas , Cárie Dentária , Saccharum , Desmineralização do Dente , Animais , Anti-Infecciosos/farmacologia , Biofilmes , Cariostáticos , Bovinos , Humanos , Saliva , Streptococcus mutans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA