Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38494056

RESUMO

BACKGROUND & AIMS: Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS: In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 µg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS: Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 µmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS: Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.

2.
Gut Microbes ; 15(1): 2205425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131291

RESUMO

Emerging evidence implicates microbial proteolytic activity in ulcerative colitis (UC), but whether it also plays a role in Crohn's disease (CD) remains unclear. We investigated the effects of colonizing adult and neonatal germ-free C57BL/6 mice with CD microbiota, selected based on high (CD-HPA) or low fecal proteolytic activity (CD-LPA), or microbiota from healthy controls with LPA (HC-LPA) or HPA (HC-HPA). We then investigated colitogenic mechanisms in gnotobiotic C57BL/6, and in mice with impaired Nucleotide-binding Oligomerization Domain-2 (NOD2) and Protease-Activated Receptor 2 (PAR2) cleavage resistant mice (Nod2-/-; R38E-PAR2 respectively). At sacrifice, total fecal proteolytic, elastolytic, and mucolytic activity were analyzed. Microbial community and predicted function were assessed by 16S rRNA gene sequencing and PICRUSt2. Immune function and colonic injury were investigated by inflammatory gene expression (NanoString) and histology. Colonization with HC-LPA or CD-LPA lowered baseline fecal proteolytic activity in germ-free mice, which was paralleled by lower acute inflammatory cell infiltrate. CD-HPA further increased proteolytic activity compared with germ-free mice. CD-HPA mice had lower alpha diversity, distinct microbial profiles and higher fecal proteolytic activity compared with CD-LPA. C57BL/6 and Nod2-/- mice, but not R38E-PAR2, colonized with CD-HPA had higher colitis severity than those colonized with CD-LPA. Our results indicate that CD proteolytic microbiota is proinflammatory, increasing colitis severity through a PAR2 pathway.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-2/genética , RNA Ribossômico 16S/genética , Inflamação , Serina Proteases
3.
Nat Commun ; 10(1): 1198, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867416

RESUMO

Microbe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas. Using Pseudomonas aeruginosa producing elastase as a model, we show gluten-independent, PAR-2 mediated upregulation of inflammatory pathways in C57BL/6 mice without villus blunting. In mice expressing CeD risk genes, P. aeruginosa elastase synergizes with gluten to induce more severe inflammation that is associated with moderate villus blunting. These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.


Assuntos
Proteínas de Bactérias/metabolismo , Doença Celíaca/imunologia , Proteínas Alimentares/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Metaloendopeptidases/metabolismo , Receptor PAR-2/imunologia , Adulto , Idoso , Animais , Antígenos/imunologia , Antígenos/metabolismo , Proteínas de Bactérias/genética , Biópsia , Estudos de Casos e Controles , Doença Celíaca/diagnóstico por imagem , Doença Celíaca/microbiologia , Doença Celíaca/patologia , Estudos de Coortes , Colonoscopia , Proteínas Alimentares/metabolismo , Modelos Animais de Doenças , Duodeno/imunologia , Duodeno/metabolismo , Duodeno/microbiologia , Duodeno/patologia , Feminino , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Glutens/imunologia , Glutens/metabolismo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Antígenos HLA-DQ/metabolismo , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteólise , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Receptor PAR-2/metabolismo , Regulação para Cima , Adulto Jovem
4.
Res Microbiol ; 168(7): 673-684, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28526528

RESUMO

Gluten is the only known environmental factor that triggers celiac disease. Several studies have described an imbalance between the intestinal microbiota of different individuals based on diagnoses. Moreover, recent studies have suggested that human bacteria may play an important role in gluten hydrolysis. However, there has been no research focusing on the small intestine. This study aimed to characterize the adult small intestine microbiota possibly implicated in gluten hydrolysis. Duodenal biopsies from different diagnosed individuals were cultured in a gluten-containing medium, and the grown microbiota was analyzed by culture dependent/independent methods. Results showed that gluten-degrading bacteria can be found in the human small intestine. Indeed, 114 bacterial strains belonging to 32 species were isolated; 85 strains were able to grow in a medium containing gluten as the sole nitrogen source, 31 strains showed extracellular proteolytic activity against gluten protein and 27 strains showed peptidolytic activity towards the 33 mer peptide, an immunogenic peptide for celiac disease patients. We found that there are no differences based on the diagnosis, but each individual has its own population of gluten-hydrolyzing bacteria. These bacteria or their gluten-degrading enzymes could help to improve the quality of life of celiac disease patients'.


Assuntos
Bactérias/metabolismo , Doença Celíaca/microbiologia , Duodeno/microbiologia , Microbioma Gastrointestinal/fisiologia , Glutens/metabolismo , Intestino Delgado/microbiologia , Adulto , Idoso , Bactérias/efeitos dos fármacos , Doença Celíaca/fisiopatologia , Duodeno/efeitos dos fármacos , Duodeno/patologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glutens/farmacologia , Voluntários Saudáveis , Humanos , Hidrólise , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia
5.
World J Gastrointest Pharmacol Ther ; 6(4): 207-12, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26558154

RESUMO

Celiac disease may appear both in early childhood and in elderly subjects. Current knowledge of the disease has revealed some differences associated to the age of presentation. Furthermore, monitoring and prognosis of celiac subjects can vary depending on the pediatric or adult stage. The main objective of this review is to provide guidance for the adult diagnostic and follow-up processes, which must be tailored specifically for adults and be different from pediatric patients.

6.
Eur J Gastroenterol Hepatol ; 26(3): 263-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24300305

RESUMO

BACKGROUND: Serological markers of coeliac disease (CD) lack diagnostic value to identify mild histopathological lesions mainly in adults at risk of CD. AIMS: The aim of this study was to evaluate the usefulness of human leukocyte antigen (HLA)-DQ2/8 genotyping, followed by duodenal biopsy for the detection of CD in adult first-degree relatives (FDRs) of patients with CD. MATERIALS AND METHODS: Ninety-two adult DQ2/8 positive FDRs were consecutively included. A duodenal biopsy was offered irrespective of the serology result or associated symptoms. The clinical features, associated autoimmune diseases and biochemical parameters were recorded. RESULTS: Sixty-seven FDRs (mean age 34 years) underwent a duodenal biopsy. Histopathological alterations were found in 32 (48%) and showed the following stages: 12 Marsh I (18%), one Marsh II (1.5%), four Marsh IIIA (6%), five Marsh IIIB (7.5%) and 10 Marsh IIIC (15%). Positive serological markers were present in 17/67 (25%), with only one showing Marsh I and the remainder presenting some degree of duodenal atrophy (Marsh III). In addition, 33/67 (54%) had gastrointestinal symptoms, with dyspepsia being the most prevalent. The distribution of symptoms, anaemia and autoimmune disease was independent of the duodenal histopathological stage. Serology-based screening would diagnose 50% of the cases showing any degree of CD spectrum and miss 6% of the cases with mucosal atrophy. CONCLUSION: Adult FDRs of patients with CD can benefit from a screening strategy on the basis of HLA-DQ genotyping, followed by a duodenal biopsy. Gastrointestinal symptoms and lymphocytic enteritis are common findings that may benefit from a gluten-free diet.


Assuntos
Doença Celíaca/diagnóstico , Adolescente , Adulto , Idoso , Autoanticorpos/sangue , Biomarcadores/sangue , Biópsia , Doença Celíaca/complicações , Doença Celíaca/genética , Duodeno/patologia , Dispepsia/etiologia , Feminino , Proteínas de Ligação ao GTP/imunologia , Predisposição Genética para Doença , Antígenos HLA-DQ/genética , Teste de Histocompatibilidade , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Proteína 2 Glutamina gama-Glutamiltransferase , Índice de Gravidade de Doença , Transglutaminases/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA