Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 13(1): 12262, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507442

RESUMO

Bronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease of prematurity with limited treatment options. To uncover biomarkers of BPD risk, this study investigated epigenetic and transcriptomic signatures of prematurity at birth and during the neonatal period at day 14 and 28. Peripheral blood DNAs from preterm infants were applied to methylation arrays and cell-type composition was estimated by deconvolution. Covariate-adjusted robust linear regression elucidated BPD- and prolonged oxygen (≥ 14 days) exposure-associated CpGs. RNAs from cord and peripheral blood were sequenced, and differentially expressed genes (DEGs) for BPD or oxygen exposure were determined. Estimated neutrophil-lymphocyte ratios in peripheral blood at day 14 in BPD infants were significantly higher than nonBPD infants, suggesting an heightened inflammatory response in developing BPD. BPD-DEGs in cord blood indicated lymphopoiesis inhibition, altered Th1/Th2 responses, DNA damage, and organ degeneration. On day 14, BPD-associated CpGs were highly enriched in neutrophil activation, infection, and CD4 + T cell quantity, and BPD-DEGs were involved in DNA damage, cellular senescence, T cell homeostasis, and hyper-cytokinesis. On day 28, BPD-associated CpGs along with BPD-DEGs were enriched for phagocytosis, neurological disorder, and nucleotide metabolism. Oxygen supplementation markedly downregulated mitochondrial biogenesis genes and altered CpGs annotated to developmental genes. Prematurity-altered DNA methylation could cause abnormal lymphopoiesis, cellular assembly and cell cycle progression to increase BPD risk. Similar pathways between epigenome and transcriptome networks suggest coordination of the two in dysregulating leukopoiesis, adaptive immunity, and innate immunity. The results provide molecular insights into biomarkers for early detection and prevention of BPD.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Displasia Broncopulmonar/etiologia , Epigenoma , Estudos Prospectivos , Perfilação da Expressão Gênica , Biomarcadores , Oxigênio
2.
Clin Epigenetics ; 15(1): 90, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231515

RESUMO

BACKGROUND: Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS: Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS: We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.


Assuntos
Metilação de DNA , Fumar , Adulto , Humanos , Fumar/efeitos adversos , Fumar/genética , Estudo de Associação Genômica Ampla , Epigenômica , Leucócitos , Fumar Tabaco , Ilhas de CpG , Epigênese Genética
3.
Clin Epigenetics ; 14(1): 57, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484630

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a lung disease in premature infants caused by therapeutic oxygen supplemental and characterized by impaired pulmonary development which persists into later life. While advances in neonatal care have improved survival rates of premature infants, cases of BPD have been increasing with limited therapeutic options for prevention and treatment. This study was designed to explore the relationship between gestational age (GA), birth weight, and estimated blood cell-type composition in premature infants and to elucidate early epigenetic biomarkers associated with BPD. METHODS: Cord blood DNA from preterm neonates that went on to develop BPD (n = 14) or not (non-BPD, n = 93) was applied to Illumina 450 K methylation arrays. Blood cell-type compositions were estimated using DNA methylation profiles. Multivariable robust regression analysis elucidated CpGs associated with BPD risk. cDNA microarray analysis of cord blood RNA identified differentially expressed genes in neonates who later developed BPD. RESULTS: The development of BPD and the need for oxygen supplementation were strongly associated with GA (BPD, p < 1.0E-04; O2 supplementation, p < 1.0E-09) and birth weight (BPD, p < 1.0E-02; O2 supplementation, p < 1.0E-07). The estimated nucleated red blood cell (NRBC) percent was negatively associated with birth weight and GA, positively associated with hypomethylation of the tobacco smoke exposure biomarker cg05575921, and high-NRBC blood samples displayed a hypomethylation profile. Epigenome-wide association study (EWAS) identified 38 (Bonferroni) and 275 (false discovery rate 1%) differentially methylated CpGs associated with BPD. BPD-associated CpGs in cord blood were enriched for lung maturation and hematopoiesis pathways. Stochastic epigenetic mutation burden at birth was significantly elevated among those who developed BPD (adjusted p = 0.02). Transcriptome changes in cord blood cells reflected cell cycle, development, and pulmonary disorder events in BPD. CONCLUSIONS: While results must be interpreted with caution because of the small size of this study, NRBC content strongly impacted DNA methylation profiles in preterm cord blood and EWAS analysis revealed potential insights into biological pathways involved in BPD pathogenesis.


Assuntos
Displasia Broncopulmonar , Biomarcadores , Peso ao Nascer , Displasia Broncopulmonar/genética , Metilação de DNA , Epigenoma , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
4.
Alzheimers Dement ; 18(6): 1128-1140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569696

RESUMO

INTRODUCTION: Blood-based biomarkers of amyloid pathology and neurodegeneration are entering clinical use. It is critical to understand what factors affect the levels of these markers. METHODS: Plasma markers (Aß42, Aß40, NfL, T-tau, Aß42/40 ratio) were measured on the Quanterix Simoa HD-1 analyzer for 996 Mayo Clinic Study of Aging (MCSA) participants, aged 51 to 95 years. All other data were collected during in-person MCSA visits or abstracted from the medical record. RESULTS: Among cognitively unimpaired (CU) participants, all plasma markers correlated with age. Linear regression models revealed multiple relationships. For example, higher Charlson Comorbidity Index and chronic kidney disease were associated with higher levels of all biomarkers. Some relationships differed between mild cognitive impairment and dementia participants. DISCUSSION: Multiple variables affect plasma biomarkers of amyloid pathology and neurodegeneration among CU in the general population. Incorporating this information is critical for accurate interpretation of the biomarker levels and for the development of reference ranges.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Comorbidade , Humanos , Proteínas tau
5.
Cell Rep Med ; 1(4)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33163982

RESUMO

Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing Natural Killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers' CD8 T cells are biased toward differentiated cells and smokers have fewer naïve cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Receptores de IgG/metabolismo , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fumar Cigarros/imunologia , Feminino , Proteínas Ligadas por GPI/efeitos dos fármacos , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Doenças do Sistema Imunitário/fisiopatologia , Células Matadoras Naturais/imunologia , Antígenos Comuns de Leucócito , Masculino , Pessoa de Meia-Idade , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia , Análise de Célula Única/métodos , Fumantes , Fumar/sangue
6.
Sci Total Environ ; 742: 140424, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629249

RESUMO

The Anniston Community Health Survey (ACHS-I) was initially conducted from 2005 to 2007 to assess polychlorinated biphenyl (PCB) exposures in Anniston, Alabama residents. In 2014, a follow-up study (ACHS-II) was conducted to measure the same PCBs as in ACHS-I and additional compounds e.g., polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like non-ortho (cPCBs) substituted PCBs. In this epigenome-wide association study (EWAS), we examined the associations between PCDD, PCDF, and PCB exposures and DNA methylation. Whole blood DNA methylation was measured using Illumina EPIC arrays (n=292). We modeled lipid-adjusted toxic equivalencies (TEQs) for: ΣDioxins (sum of 28 PCDDs, PCDFs, cPCBs, and mPCBs), PCDDs, PCDFs, cPCBs, and mPCBs using robust multivariable linear regression adjusting for age, race, sex, smoking, bisulfite conversion batch, and estimated percentages of six blood cell types. Among all exposures we identified 10 genome-wide (Bonferroni p≤6.74E-08) and 116 FDR (p≤5.00E-02) significant associations representing 10 and 113 unique CpGs, respectively. Of the 10 genome-wide associations, seven (70%) occurred in the PCDDs and four (40%) of these associations had an absolute differential methylation ≥1.00%, based on the methylation difference between the highest and lowest exposure quartiles. Most of the associations (six, 60%) represented hypomethylation changes. Of the 10 unique CpGs, eight (80%) were in genes shown to be associated with dioxins and/or PCBs based on data from the 2019 Comparative Toxicogenomics Database. In this study, we have identified a set of CpGs in blood DNA that may be particularly susceptible to dioxin, furan, and dioxin-like PCB exposures.


Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados/análise , Alabama , Metilação de DNA , Dibenzofuranos Policlorados , Seguimentos , Saúde Pública , Inquéritos e Questionários
7.
Epigenetics ; 15(4): 337-357, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607210

RESUMO

Anniston, Alabama was home to a major polychlorinated biphenyl (PCB) production facility from 1929 until 1971. The Anniston Community Health Survey I and II (ACHS-I 2005-2007, ACHS-II 2013-2014) were conducted to explore the effects of PCB exposures. In this report we examined associations between PCB exposure and DNA methylation in whole blood using EPIC arrays (ACHS-I, n = 518; ACHS-II, n = 299). For both cohorts, 35 PCBs were measured in serum. We modelled methylation versus PCB wet-weight concentrations for: the sum of 35 PCBs, mono-ortho substituted PCBs, di-ortho substituted PCBs, tri/tetra-ortho substituted PCBs, oestrogenic PCBs, and antiestrogenic PCBs. Using robust multivariable linear regression, we adjusted for age, race, sex, smoking, total lipids, and six blood cell-type percentages. We carried out a two-stage analysis; discovery in ACHS-I followed by replication in ACHS-II. In ACHS-I, we identified 28 associations (17 unique CpGs) at p ≤ 6.70E-08 and 369 associations (286 unique CpGs) at FDR p ≤ 5.00E-02. A large proportion of the genes have been observed to interact with PCBs or dioxins in model studies. Among the 28 genome-wide significant CpG/PCB associations, 14 displayed replicated directional effects in ACHS-II; however, only one in ACHS-II was statistically significant at p ≤ 1.70E-04. While we identified many novel CpGs significantly associated with PCB exposures in ACHS-I, the differential methylation was modest and the effect was attenuated seven years later in ACHS-II, suggesting a lack of persistence of the associations between PCB exposures and altered DNA methylation in blood cells.


Assuntos
Metilação de DNA , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/sangue , Exposição Ocupacional/efeitos adversos , Bifenilos Policlorados/sangue , Adulto , Alabama , Ilhas de CpG , Poluentes Ambientais/toxicidade , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Bifenilos Policlorados/toxicidade
8.
Clin Epigenetics ; 11(1): 87, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182156

RESUMO

BACKGROUND: Numerous studies have demonstrated that DNA methylation levels in the aryl hydrocarbon receptor repressor (AHRR) gene measured in cord blood are significantly associated with prenatal tobacco smoke exposure and can be used as a fetal exposure biomarker. The mechanism driving this demethylation has not been determined and it is unclear if all cord blood cell types are impacted. Nucleated red blood cells (nRBCs/CD235a+ cells) are developmentally immature RBCs that display genome-wide hypomethylation and are observed at increased frequency in the cord blood of smoking mothers. We tested if AHRR methylation levels in CD235a+ nRBCs or nRBC counts influenced AHRR methylation in whole cord blood. METHODS: Cord blood was collected from smoking (n = 34) and nonsmoking (n = 19) mothers and DNA was prepared from whole cord blood, isolated CD235a+ nRBCs, and CD14+ monocytes. AHRR methylation in cord blood DNA was measured using Illumina 850K arrays (cg05575921, chr5:373378). Pyrosequencing was used to compare methylation levels among cord blood, CD235a+, and CD14+ cells. We measured nRBC percentages using conventional complete blood counts and estimated percent nRBCs by a deconvolution model. RESULTS: Methylation levels in AHRR were significantly lower in nRBCs relative to whole cord blood and CD14+ monocytes. While AHRR methylation levels in the cell types were significantly correlated across all subjects, methylation values at the chr5:373378 CpG averaged 14.6% lower in nRBCs (range 0.4 to 24.8%; p = 3.8E-13) relative to CD14+, with nonsmokers showing a significantly greater hypomethylation (- 4.1%, p = 1.8E-02). Methylation level at the AHRR chr5:373378 CpG was strongly associated with self-reported smoking in both CD14+ monocytes (t test p = 5.7E-09) and nRBCs (p = 4.8E-08), as well as cotinine levels (regression p = 1.1E-07 and p = 3.6E-04, respectively). For subjects with whole blood 850K data, robust linear regression models adjusting for estimated cell type composition, either including nRBCs counts or estimates, modestly increased the association between smoking and cg05575921 methylation. CONCLUSIONS: Prenatal smoke exposure was highly significantly associated with AHRR methylation in cord blood, CD14+ monocytes, and CD235a+ nRBCs. AHRR methylation levels in nRBCs and nRBC counts had minimal effect on cord blood methylation measurements. However, regression models using estimated nRBCs or actual nRBC counts outperformed those lacking these covariates.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desmetilação do DNA , Eritrócitos/imunologia , Glicoforinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Proteínas Repressoras/genética , Fumar/efeitos adversos , Adulto , Ilhas de CpG , Epigênese Genética , Contagem de Eritrócitos , Feminino , Sangue Fetal/imunologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Idade Materna , Gravidez , Análise de Sequência de DNA , Fumar/genética , Adulto Jovem
9.
Environ Health Perspect ; 127(4): 47009, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039056

RESUMO

BACKGROUND: Maternal tobacco smoke exposure has been associated with altered DNA methylation. However, previous studies largely used methylation arrays, which cover a small fraction of CpGs, and focused on whole cord blood. OBJECTIVES: The current study examined the impact of in utero exposure to maternal tobacco smoke on the cord blood [Formula: see text] DNA methylome. METHODS: The methylomes of 20 Hispanic white newborns ([Formula: see text] exposed to any maternal tobacco smoke in pregnancy; [Formula: see text] unexposed) from the Maternal and Child Health Study (MACHS) were profiled by whole-genome bisulfite sequencing (median coverage: [Formula: see text]). Statistical analyses were conducted using the Regression Analysis of Differential Methylation (RADMeth) program because it performs well on low-coverage data (minimizes false positives and negatives). RESULTS: We found that 10,381 CpGs were differentially methylated by tobacco smoke exposure [neighbor-adjusted p-values that are additionally corrected for multiple testing based on the Benjamini-Hochberg method for controlling the false discovery rate (FDR) [Formula: see text]]. From these CpGs, RADMeth identified 557 differentially methylated regions (DMRs) that were overrepresented ([Formula: see text]) in important regulatory regions, including enhancers. Of nine DMRs that could be queried in a reduced representation bisulfite sequencing (RRBS) study of adult [Formula: see text] cells ([Formula: see text] smokers; [Formula: see text] nonsmokers), four replicated ([Formula: see text]). Additionally, a CpG in the promoter of SLC7A8 (percent methylation difference: [Formula: see text] comparing exposed to unexposed) replicated ([Formula: see text]) in an EPIC (Illumina) array study of cord blood [Formula: see text] cells ([Formula: see text] exposed to sustained maternal tobacco smoke; [Formula: see text] unexposed) and in a study of adult [Formula: see text] cells across two platforms (EPIC: [Formula: see text] smokers; [Formula: see text] nonsmokers; 450K: [Formula: see text] smokers; [Formula: see text] nonsmokers). CONCLUSIONS: Maternal tobacco smoke exposure in pregnancy is associated with cord blood [Formula: see text] DNA methylation in key regulatory regions, including enhancers. While we used a method that performs well on low-coverage data, we cannot exclude the possibility that some results may be false positives. However, we identified a differentially methylated CpG in amino acid transporter SLC7A8 that is highly reproducible, which may be sensitive to cigarette smoke in both cord blood and adult [Formula: see text] cells. https://doi.org/10.1289/EHP3398.


Assuntos
Linfócitos T CD4-Positivos/química , Epigenoma/efeitos dos fármacos , Sangue Fetal/química , Exposição Materna , Poluição por Fumaça de Tabaco/análise , Adulto , Metilação de DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Adulto Jovem
10.
Environ Health Perspect ; 126(4): 047015, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29706059

RESUMO

BACKGROUND: Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. OBJECTIVE: Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. METHOD: We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [n=38 from Clinical Research Unit (CRU) and n=55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells (n=19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RESULTS: RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene (AHRR) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR, C5orf55-EXOC-AS, and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. CONCLUSIONS: Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation of enhancers at SM-DMRs may represent a mechanism driving smoking-related disease. https://doi.org/10.1289/EHP2395.


Assuntos
Metilação de DNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA não Traduzido/efeitos dos fármacos , Fumar/efeitos adversos , Sulfitos/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Sequências Reguladoras de Ácido Nucleico/efeitos dos fármacos , Sequências Reguladoras de Ácido Nucleico/genética
12.
PLoS One ; 11(12): e0166486, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935972

RESUMO

Tobacco smoke exposure dramatically alters DNA methylation in blood cells and may mediate smoking-associated complex diseases through effects on immune cell function. However, knowledge of smoking effects in specific leukocyte subtypes is limited. To better characterize smoking-associated methylation changes in whole blood and leukocyte subtypes, we used Illumina 450K arrays and Reduced Representation Bisulfite Sequencing (RRBS) to assess genome-wide DNA methylation. Differential methylation analysis in whole blood DNA from 172 smokers and 81 nonsmokers revealed 738 CpGs, including 616 previously unreported CpGs, genome-wide significantly associated with current smoking (p <1.2x10-7, Bonferroni correction). Several CpGs (MTSS1, NKX6-2, BTG2) were associated with smoking duration among heavy smokers (>22 cigarettes/day, n = 86) which might relate to long-term heavy-smoking pathology. In purified leukocyte subtypes from an independent group of 20 smokers and 14 nonsmokers we further examined methylation and gene expression for selected genes among CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ T cells. In 10 smokers and 10 nonsmokers we used RRBS to fine map differential methylation in CD4+ T cells, CD8+ T cells, CD14+, CD15+, CD19+, and CD56+ natural killer cells. Distinct cell-type differences in smoking-associated methylation and gene expression were identified. AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 (cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) showed a distinct pattern of significant smoking-associated methylation differences across cell types: granulocytes> monocytes>> B cells. In contrast GPR15 (cg19859270) was highly significant in T and B cells and ITGAL (cg09099830) significant only in T cells. Numerous other CpGs displayed distinctive cell-type responses to tobacco smoke exposure that were not apparent in whole blood DNA. Assessing the overlap between these CpG sites and differential methylated regions (DMRs) with RRBS in 6 cell types, we confirmed cell-type specificity in the context of DMRs. We identified new CpGs associated with current smoking, pack-years, duration, and revealed unique profiles of smoking-associated DNA methylation and gene expression among immune cell types, providing potential clues to hematopoietic lineage-specific effects in disease etiology.


Assuntos
Metilação de DNA , Epigenômica/métodos , Leucócitos/metabolismo , Fumar , Adulto , Fosfatase Alcalina/genética , Proteínas Reguladoras de Apoptose/genética , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Granulócitos/metabolismo , Humanos , Leucócitos/classificação , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores de Trombina/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Adulto Jovem
13.
Cell Rep ; 15(4): 830-842, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27149848

RESUMO

The NRF2/sMAF protein complex regulates the oxidative stress response by occupying cis-acting enhancers containing an antioxidant response element (ARE). Integrating genome-wide maps of NRF2/sMAF occupancy with disease-susceptibility loci, we discovered eight polymorphic AREs linked to 14 highly ranked disease-risk SNPs in individuals of European ancestry. Among these SNPs was rs242561, located within a regulatory region of the MAPT gene (encoding microtubule-associated protein Tau). It was consistently occupied by NRF2/sMAF in multiple experiments and its strong-binding allele associated with higher mRNA levels in cell lines and human brain tissue. Induction of MAPT transcription by NRF2 was confirmed using a human neuroblastoma cell line and a Nrf2-deficient mouse model. Most importantly, rs242561 displayed complete linkage disequilibrium with a highly protective allele identified in multiple GWASs of progressive supranuclear palsy, Parkinson's disease, and corticobasal degeneration. These observations suggest a potential role for NRF2/sMAF in tauopathies and a possible role for NRF2 pathway activators in disease prevention.

14.
Genes Dev ; 30(8): 918-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034505

RESUMO

A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.


Assuntos
Genes p53/genética , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , População Negra/genética , Carcinoma Hepatocelular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Cisplatino/farmacologia , Códon/química , Códon/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Ligação Proteica/genética , Fatores de Risco , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
15.
PLoS Genet ; 11(1): e1004885, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569532

RESUMO

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.


Assuntos
Cromatina/genética , Elementos de Resposta/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Animais , Sítios de Ligação , Cromatina/efeitos dos fármacos , Estruturas Cromossômicas/efeitos dos fármacos , Estruturas Cromossômicas/genética , Elementos de DNA Transponíveis , Doxorrubicina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Humanos , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismo
16.
Cell ; 155(2): 410-22, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120139

RESUMO

The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Fator de Células-Tronco/genética , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Seleção Genética , Transcrição Gênica
17.
Oxid Med Cell Longev ; 2013: 120305, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766848

RESUMO

Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1), and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.


Assuntos
Genes , Hematopoese/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transcrição Gênica , Linhagem Celular , Imunoprecipitação da Cromatina , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Estudos de Associação Genética , Loci Gênicos , Globinas/genética , Hematopoese/efeitos dos fármacos , Humanos , Isotiocianatos/farmacologia , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/genética , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Reprodutibilidade dos Testes , Sulfóxidos , Transcrição Gênica/efeitos dos fármacos
18.
Nucleic Acids Res ; 39(1): 178-89, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817676

RESUMO

p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein-DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.


Assuntos
Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Proteína Supressora de Tumor p53/metabolismo , Alelos , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Biologia Computacional , Dano ao DNA , Doxorrubicina/farmacologia , Humanos , Ligação Proteica , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos
19.
PLoS Genet ; 5(5): e1000462, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424414

RESUMO

The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation -- including polymorphisms -- and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt) variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs) was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks.


Assuntos
DNA/genética , DNA/metabolismo , Técnicas Genéticas , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/metabolismo , Corantes Fluorescentes , Redes Reguladoras de Genes , Genes p53 , Técnicas Genéticas/estatística & dados numéricos , Humanos , Técnicas In Vitro , Microesferas , Modelos Genéticos , Mutagênese Sítio-Dirigida , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
20.
Proc Natl Acad Sci U S A ; 102(18): 6431-6, 2005 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-15843459

RESUMO

The p53 tumor suppressor protein is a master regulatory transcription factor that coordinates cellular responses to DNA damage and cellular stress. Besides mutations in p53, or in proteins involved in the p53 response pathway, genetic variation in promoter response elements (REs) of p53 target genes is expected to alter biological responses to stress. To identify SNPs in p53 REs that may modify p53-controlled gene expression, we developed an approach that combines a custom bioinformatics search to identify candidate SNPs with functional yeast and mammalian cell assays to assess their effect on p53 transactivation. Among approximately 2 million human SNPs, we identified >200 that seem to disrupt functional p53 REs. Eight of these SNPs were evaluated in functional assays to determine both the activity of the putative RE and the impact of the candidate SNPs on transactivation. All eight candidate REs were functional, and in every case the SNP pair exhibited differential transactivation capacities. Additionally, six of the eight genes adjacent to these SNPs are induced by genotoxic stress or are activated directly by transfection with p53 cDNA. Thus, this strategy efficiently identifies SNPs that may differentially affect gene expression responses in the p53 regulatory pathway.


Assuntos
Regulação da Expressão Gênica , Genoma Humano , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Biologia Computacional , DNA Complementar/genética , Humanos , Luciferases , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transfecção , Proteína Supressora de Tumor p53/genética , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA