Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38858085

RESUMO

Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.

2.
JCI Insight ; 9(12)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38912584

RESUMO

The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of ß1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.


Assuntos
Carcinoma Ductal Pancreático , N-Acetilglucosaminiltransferases , Neoplasias Pancreáticas , Animais , Glicosilação , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos Knockout
3.
Nat Commun ; 11(1): 4055, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792504

RESUMO

Although metastasis is the most common cause of cancer deaths, metastasis-intrinsic dependencies remain largely uncharacterized. We previously reported that metastatic pancreatic cancers were dependent on the glucose-metabolizing enzyme phosphogluconate dehydrogenase (PGD). Surprisingly, PGD catalysis was constitutively elevated without activating mutations, suggesting a non-genetic basis for enhanced activity. Here we report a metabolic adaptation that stably activates PGD to reprogram metastatic chromatin. High PGD catalysis prevents transcriptional up-regulation of thioredoxin-interacting protein (TXNIP), a gene that negatively regulates glucose import. This allows glucose consumption rates to rise in support of PGD, while simultaneously facilitating epigenetic reprogramming through a glucose-fueled histone hyperacetylation pathway. Restoring TXNIP normalizes glucose consumption, lowers PGD catalysis, reverses hyperacetylation, represses malignant transcripts, and impairs metastatic tumorigenesis. We propose that PGD-driven suppression of TXNIP allows pancreatic cancers to avidly consume glucose. This renders PGD constitutively activated and enables metaboloepigenetic selection of additional traits that increase fitness along glucose-replete metastatic routes.


Assuntos
Cromatina/metabolismo , Glucose/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Imunoprecipitação da Cromatina , Epigênese Genética/genética , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
4.
J Biol Chem ; 294(18): 7259-7268, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877197

RESUMO

ATP-citrate lyase (ACLY) is a major source of nucleocytosolic acetyl-CoA, a fundamental building block of carbon metabolism in eukaryotes. ACLY is aberrantly regulated in many cancers, cardiovascular disease, and metabolic disorders. However, the molecular mechanisms determining ACLY activity and function are unclear. To this end, we investigated the role of the uncharacterized ACLY C-terminal citrate synthase homology domain in the mechanism of acetyl-CoA formation. Using recombinant, purified ACLY and a suite of biochemical and biophysical approaches, including analytical ultracentrifugation, dynamic light scattering, and thermal stability assays, we demonstrated that the C terminus maintains ACLY tetramerization, a conserved and essential quaternary structure in vitro and likely also in vivo Furthermore, we show that the C terminus, only in the context of the full-length enzyme, is necessary for full ACLY binding to CoA. Together, we demonstrate that ACLY forms a homotetramer through the C terminus to facilitate CoA binding and acetyl-CoA production. Our findings highlight a novel and unique role of the C-terminal citrate synthase homology domain in ACLY function and catalysis, adding to the understanding of the molecular basis for acetyl-CoA synthesis by ACLY. This newly discovered means of ACLY regulation has implications for the development of novel ACLY modulators to target acetyl-CoA-dependent cellular processes for potential therapeutic use.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Coenzima A/metabolismo , Multimerização Proteica , ATP Citrato (pro-S)-Liase/química , Catálise , Estabilidade Enzimática , Especificidade por Substrato , Temperatura
5.
Cancer Discov ; 9(3): 416-435, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626590

RESUMO

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Assuntos
Acetilcoenzima A/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Acetilação , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Genes ras , Xenoenxertos , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
6.
Mol Cell ; 71(3): 398-408, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075141

RESUMO

Nutrient-sensing mechanisms ensure that cellular activities are coordinated with nutrient availability. Recent work has established links between metabolite pools and protein post-translational modifications, as metabolites are substrates of enzymes that add or remove modifications such as acetylation, methylation, and glycosylation. Cancer cells undergo metabolic reprogramming and exhibit metabolic plasticity that allows them to survive and proliferate within the tumor microenvironment. In this article we review the evidence that, in cancer cells, nutrient availability and oncogenic metabolic reprogramming impact the abundance of key metabolites that regulate signaling and epigenetics. We propose models to explain how these metabolites may control locus-specific chromatin modification and gene expression. Finally, we discuss emerging roles of metabolites in regulating malignant phenotypes and tumorigenesis via transcriptional control. An improved understanding of how metabolic alterations in cancer affect nuclear gene regulation could uncover new vulnerabilities to target therapeutically.


Assuntos
Redes e Vias Metabólicas/fisiologia , Neoplasias/metabolismo , Nutrientes/metabolismo , Acetilação , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética/genética , Epigenômica , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética , Neoplasias/fisiopatologia , Nutrigenômica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
7.
Oncotarget ; 7(28): 43713-43730, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27248322

RESUMO

The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased ß-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Quinases/metabolismo , Receptores Androgênicos/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Retroalimentação Fisiológica , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA