Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 6(57)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712472

RESUMO

Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.


Assuntos
Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Pré-Escolar , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunofenotipagem , Lactente , Células Matadoras Naturais/citologia , Camundongos , Camundongos Knockout , Receptores KIR/genética , Receptores KIR/metabolismo , Proteínas Repressoras/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/genética
2.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760930

RESUMO

The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor ß production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.


Assuntos
Imunomodulação , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/fisiologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Parasita , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator de Transcrição STAT4/metabolismo , Toxoplasma/fisiologia , Fator de Crescimento Transformador beta/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA