Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 33(11): 721-744, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37775999

RESUMO

INTRODUCTION: Exploring the chemical diversity and molecular mechanisms of natural products continues to be an important research area for identifying novel promising therapeutic approaches for fighting cancer. This is a complex disease and poses important challenges, which require not only targeted interventions to improve chemotherapy efficacy and tolerability, but also adjuvant strategies to counteract chemoresistance development and relapses. AREAS COVERED: After a brief description of the recent literature on the anticancer potential of natural compounds, we searched for patents following the PRISMA guidelines, filtering the results published from 2019 onwards. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION: This review comprehensively covers and analyzes the most recent advances on the anticancer mechanism of licensed natural compounds and their chemical optimization. Patentability of natural compounds was discussed according to the recent legislation in the U.S.A. and Europe.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Produtos Biológicos/química , Patentes como Assunto , Neoplasias/tratamento farmacológico
2.
Expert Opin Ther Pat ; 33(3): 247-263, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36933190

RESUMO

INTRODUCTION: Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED: After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new antitrypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018 onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION: This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Finally, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Patentes como Assunto , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico
3.
Expert Opin Ther Pat ; 32(8): 849-883, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35638744

RESUMO

INTRODUCTION: Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood, and cognitive activity, and monoamine catabolism. AREAS COVERED: MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION: MAO inhibitors here reported exhibit different potencies and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.


Assuntos
Inibidores da Monoaminoxidase , Patentes como Assunto , Antidepressivos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Relação Estrutura-Atividade
4.
Molecules ; 26(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805064

RESUMO

Following a similar approach on carvacrol-based derivatives, we investigated the synthesis and the microbiological screening against eight strains of H. pylori, and the cytotoxic activity against human gastric adenocarcinoma (AGS) cells of a new series of ether compounds based on the structure of thymol. Structural analysis comprehended elemental analysis and 1H/13C/19F NMR spectra. The analysis of structure-activity relationships within this molecular library of 38 structurally-related compounds reported that some chemical modifications of the OH group of thymol led to broad-spectrum growth inhibition on all isolates. Preferred substitutions were benzyl groups compared to alkyl chains, and the specific presence of functional groups at para position of the benzyl moiety such as 4-CN and 4-Ph endowed the most anti-H. pylori activity toward all the strains with minimum inhibitory concentration (MIC) values up to 4 µg/mL. Poly-substitution on the benzyl ring was not essential. Moreover, several compounds characterized by the lowest minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values against H. pylori were also tested in order to verify a cytotoxic effect against AGS cells with respect to 5-fluorouracil and carvacrol. Three derivatives can be considered as new lead compounds alternative to current therapy to manage H. pylori infection, preventing the occurrence of severe gastric diseases. The present work confirms the possibility to use natural compounds as templates for the medicinal semi-synthesis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antibacterianos , Antineoplásicos , Helicobacter pylori/crescimento & desenvolvimento , Neoplasias Gástricas/tratamento farmacológico , Timol/química , Adenocarcinoma/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Gástricas/metabolismo
5.
Expert Opin Ther Pat ; 29(10): 769-780, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385719

RESUMO

Introduction: Glaucoma is one of the main leading causes of irreversible blindness in the world. The treatment of this disease relies on the use of drugs able to reduce/control the intraocular pressure (IOP), one of the main risk factors for glaucoma. Current therapies are based on the use of compounds belonging to well-established categories (prostaglandin analogs, ß-adrenergic blockers, α-adrenergic agonists, carbonic anhydrase inhibitors, Rho kinase inhibitors, and cholinergic agonists). However, even if they are effective in reducing IOP, important side effects impair patient compliance, accounting for the necessity of novel therapy approaches. Therefore, new targets are emerging as alternative and more complete routes to fight glaucoma disease. Areas covered: This review provides a comprehensive update on the development state of innovative strategies against glaucoma describing results, administration routes, pharmaceutical compositions, structures, and SARs as well as the related shortcomings within the 2013-2019 range. Expert opinion: New innovative pharmacological targets have been explored in the last six years, allowing a broader therapeutic arsenal against glaucoma and IOP-related pathologies. The endocannabinoid system and FAAH inhibitors were the most investigated from a medicinal chemistry point of view.


Assuntos
Desenvolvimento de Medicamentos , Glaucoma/tratamento farmacológico , Pressão Intraocular/efeitos dos fármacos , Animais , Glaucoma/fisiopatologia , Humanos , Adesão à Medicação , Patentes como Assunto , Fatores de Risco , Relação Estrutura-Atividade
6.
Food Chem Toxicol ; 120: 172-182, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30008431

RESUMO

This study aims to establish the biological and chemical profile of Asphodeline liburnica (Scop.) Rchb. root. The antioxidant, antimicrobial, enzyme inhibitory, DNA protection, apoptotic DNA ladder fragmentation analysis, and anti-proliferative of A. liburnica were established using standard assays. In silico study was also performed to understand interactions between quantified anthraquinones and key enzymes of clinical relevance. Total phenolic and flavonoid contents were found to be 9.67 mgGAE/g and 1.48 mgRE/g extract, respectively. Chrysophanol was detected as a major anthraquinone. The extract exhibited radical scavenging ability against DPPH and ABTS with values of 13.23 and 66.99 mgTE/g extract, respectively. Good inhibitory activity against tyrosinase was recorded. In silico experiments showed that the anthraquinones were able to establish coordinative bonds with the copper atoms present in the enzymatic cavity of tyrosinase. MTT cell viability test on MDA-MB-231 cells showed that at 0.1 and 1 µg of extracts induced anti-proliferative effect. Apoptotic DNA fragmentation analysis indicated nuclear condensation resulting in DNA fragmentation, which exhibited apoptotic cell death in the presence of A. liburnica. This study has provided insights on the potential usage of A. liburnica which could open new avenues for research and stimulate future interest for the development of safe novel biopharmaceuticals.


Assuntos
Antraquinonas/toxicidade , Antraquinonas/uso terapêutico , Asphodelaceae/química , Extratos Vegetais/toxicidade , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Antraquinonas/química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
7.
J Enzyme Inhib Med Chem ; 32(1): 1260-1264, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948845

RESUMO

A series of nanomolar phosphonate matrix metalloproteinase (MPP) inhibitors was tested for inhibitory activity against a panel of selected human carbonic anhydrase (CA, EC 4.2.1.1) isozymes, covering the cancer-associated CA IX and XII. None of the reported sulfonyl and sulfonylamino-derivatives sensitively affected the catalytic activity of the cytosolic isoforms CA I and II, which are considered off-target isoforms in view of their physiological role. The most active inhibitors were in the series of chiral N-(sulfonyl)phosphovaline derivatives, which showed good to excellent inhibitory activity over target CAs, with compound 15 presenting the best isoform-selectivity toward CA IX. We suggest here that the phosphonates have the potential as dual inhibitors of MMPs and CAs, both involved in tumor formation, invasion and metastasis.


Assuntos
Anidrases Carbônicas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Metaloproteinases da Matriz/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/classificação , Ativação Enzimática/efeitos dos fármacos , Humanos , Ácidos Fosforosos/química , Isoformas de Proteínas
8.
Bioorg Med Chem ; 21(21): 6456-65, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24071448

RESUMO

The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.


Assuntos
Difosfonatos/química , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/química , Animais , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Difosfonatos/metabolismo , Difosfonatos/toxicidade , Durapatita/química , Durapatita/metabolismo , Células Hep G2 , Humanos , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/química , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/toxicidade , Metaloproteinases da Matriz/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
9.
ChemMedChem ; 6(7): 1258-68, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21714093

RESUMO

A number of matrix metalloproteinases (MMPs), proteins important in the balance of bone remodeling, play a critical role both in cancer metastasis and in bone matrix turnover associated with the presence of cancer cells in bone. Here, we report the synthesis and biological evaluation of a new class of MMP inhibitors characterized by a bisphosphonate function as the zinc binding group. Since the bisphosphonate group is also implicated in osteoclast inhibition and provides a preferential affinity to biological apatite, the new molecules can be regarded as bone-seeking medicinal agents. Docking experiments were performed to clarify the mode of binding of bisphosphonate inhibitors in the active site of MMP-2. The most promising of the studied bisphosphonates showed nanomolar inhibition against MMP-2 and resulted in potent inhibition of osteoclastic bone resorption in vitro.


Assuntos
Conservadores da Densidade Óssea/química , Difosfonatos/química , Inibidores de Metaloproteinases de Matriz , Inibidores de Proteases/química , Sítios de Ligação , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/toxicidade , Linhagem Celular Tumoral , Simulação por Computador , Difosfonatos/uso terapêutico , Difosfonatos/toxicidade , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/toxicidade , Relação Estrutura-Atividade
10.
J Med Chem ; 49(3): 923-31, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16451058

RESUMO

Potent and selective inhibitors of matrix metalloproteinases (MMPs), a family of zinc proteases that can degrade all the components of the extracellular matrix, could be useful for treatment of diseases such as cancer and arthritis. The most potent MMP inhibitors are based on hydroxamate as zinc-binding group (ZBG). alpha-Arylsulfonylamino phosphonates incorporate a particularly favorable combination of phosphonate as ZBG and arylsulfonylamino backbone so that their affinity exceptionally attains the nanomolar strength frequently observed for hydroxamate analogues. The detailed mode of binding of [1-(4'-methoxybiphenyl-4-sulfonylamino)-2-methylpropyl]phosphonate has been clarified by the crystal structures of the complexes that the R- and S-enantiomers respectively form with MMP-8. The reasons for the preferential MMP-8 inhibition by the R-phosphonate are underlined and the differences in the mode of binding of analogous alpha-arylsulfonylamino hydroxamates and carboxylates are discussed.


Assuntos
Metaloproteinase 8 da Matriz/química , Inibidores de Metaloproteinases de Matriz , Organofosfonatos/síntese química , Sulfonamidas/síntese química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Organofosfonatos/química , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA