Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(5): 3195-3211, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802610

RESUMO

The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.


Assuntos
Apetite , Receptor Tipo 4 de Melanocortina , Ratos , Humanos , Animais , Caquexia/tratamento farmacológico , Anorexia/tratamento farmacológico , Conformação Molecular
2.
Birth Defects Res ; 115(3): 348-356, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367445

RESUMO

Achondroplasia is an autosomal disorder caused by point mutation in the gene encoding fibroblast growth factor receptor 3 (FGFR3) and resulting in gain of function. Recifercept is a potential disease modifying treatment for achondroplasia and functions as a decoy protein that competes for ligands of the mutated FGFR3. Recifercept is intended to restore normal bone growth by preventing the mutated FGFR3 from negative inhibitory signaling in pediatric patients with achondroplasia. Here we evaluated the potential effects of twice weekly administration of recifercept to juvenile cynomolgus monkeys (approximately 3-months of age at the initiation of dosing) for 6-months. No adverse effects were noted in this study, identifying the high dose as the no-observed-adverse-effect-level and supporting the use of recifercept in pediatric patients from birth. Considering that juvenile toxicity studies in nonhuman primates are not frequently conducted, and when they are conducted they typically utilize animals ≥9 months of age, this study demonstrates the feasibility of executing a juvenile toxicity study in very young monkeys prior to weaning.


Assuntos
Acondroplasia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Animais , Humanos , Criança , Lactente , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Macaca fascicularis/metabolismo , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Acondroplasia/metabolismo , Desenvolvimento Ósseo , Osso e Ossos/metabolismo
3.
Toxicol Sci ; 179(2): 183-194, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247737

RESUMO

Acetyl-CoA carboxylase (ACC) is an enzyme within the de novo lipogenesis (DNL) pathway and plays a role in regulating lipid metabolism. Pharmacologic ACC inhibition has been an area of interest for multiple potential indications including oncology, acne vulgaris, metabolic diseases such as type 2 diabetes mellitus, and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. A critical role for ACC in de novo synthesis of long-chain fatty acids during fetal development has been demonstrated in studies in mice lacking Acc1, where the absence of Acc1 results in early embryonic lethality. Following positive predictions of developmental toxicity in the alternative in vitro assays (positive in murine embryonic stem cell [mESC] assay and rat whole embryo culture, but negative in zebrafish), developmental toxicity (growth retardation and dysmorphogenesis associated with disrupted midline fusion) was observed with the oral administration of the dual ACC1 and 2 inhibitors, PF-05175157, in Sprague Dawley rats and New Zealand White rabbits. The results of these studies are presented here to make comparisons across the assays, as well as mechanistic insights from the mESC assay demonstrating high ACC expression in the mESC and that ACC-induced developmental toxicity can be rescued with palmitic acid providing supportive evidence for DNL pathway inhibition as the underlying mechanism. Ultimately, while the battery of alternative approaches and weight-of-evidence case were useful for hazard identification, the embryo-fetal development studies were necessary to inform the risk assessment on the adverse fetal response, as malformations and/or embryo-fetal lethality were limited to doses that caused near-complete inhibition of DNL.


Assuntos
Acetil-CoA Carboxilase , Diabetes Mellitus Tipo 2 , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Lipogênese , Camundongos , Coelhos , Ratos , Ratos Sprague-Dawley , Peixe-Zebra/metabolismo
4.
Birth Defects Res B Dev Reprod Toxicol ; 101(4): 325-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25044418

RESUMO

Treatment-induced epididymal inflammation and granuloma formation is only an occasional problem in preclinical drug development, but it can effectively terminate the development of that candidate molecule. Screening for backup molecules without that toxicity must be performed in animals (generally rats) that requires at least 2 to 3 weeks of in vivo exposure, a great deal of specially synthesized candidate compound, and histologic examination of the target tissues. We instead hypothesized that these treatments induced proinflammatory gene expression, and so used mixed-cell cultures from the rat epididymal tubule to monitor the induction of proinflammatory cytokines. Cells were exposed for 24 hr and then cytotoxicity was evaluated with the MTS assay and mRNA levels of Interleukin-6 (IL-6) and growth-related oncogene (GRO) were measured. We found that compounds that were more toxic in vivo stimulated a greater induction of IL-6 and GRO mRNA levels in vitro. By relating effective concentrations in vitro with the predicted C(eff), we could rank compounds by their propensity to induce inflammation in rats in vivo. This method allowed the identification of several compounds with very low inflammatory induction in vitro. When tested in rats, the compounds produced small degrees of inflammation at an acceptable margin (approximately 20×), and have progressed into further development.


Assuntos
Epididimo/efeitos dos fármacos , Epididimo/patologia , Epididimite/induzido quimicamente , Epididimite/patologia , Animais , Células Cultivadas , Quimiocina CXCL1/genética , Epididimo/imunologia , Epididimite/imunologia , Granuloma/induzido quimicamente , Granuloma/patologia , Interleucina-6/genética , Masculino , Mitocôndrias/metabolismo , Cultura Primária de Células , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
5.
Toxicol Appl Pharmacol ; 274(1): 156-67, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24126418

RESUMO

Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/fisiologia , Modelos Animais , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Toxicol Sci ; 117(2): 466-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20616204

RESUMO

Germ cell apoptosis directly induced by x-radiation (x-ray) exposure is stage specific, with a higher incidence in stage II/III seminiferous tubules. A priming exposure to the Sertoli cell toxicant 2,5-hexanedione (HD) results in a marked reduction in x-ray-induced germ cell apoptosis in these affected stages. Because of the stage specificity of these responses, examination of associated gene expression in whole testis tissue has clear limitations. Laser capture microdissection (LCM) of specific cell populations in the testis is a valuable technique for investigating the responses of different cell types following toxicant exposure. LCM coupled with quantitative real-time PCR was performed to examine the expression of apoptosis-related genes at both early (3 h) and later (12 h) time points after x-ray exposure, with or without the priming exposure to HD. The mRNAs examined include Fas, FasL, caspase 3, bcl-2, p53, PUMA, and AEN, which were identified either by literature searches or microarray analysis. Group 1 seminiferous tubules (stages I-VI) exhibited the greatest changes in gene expression. Further analysis of this stage group (SG) revealed that Fas induction by x-ray is significantly attenuated by HD co-exposure. Selecting only for germ cells from seminiferous tubules of the most sensitive SG has provided further insight into the mechanisms involved in the co-exposure response. It is hypothesized that following co-exposure, germ cells adapt to the lack of Sertoli cell support by reducing the Fas response to normal FasL signals. These findings provide a better understanding and appreciation of the tissue complexity and technical difficulties associated with examining gene expression in the testis.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hexanonas/farmacologia , Protetores contra Radiação/farmacologia , Túbulos Seminíferos/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Receptor fas/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Túbulos Seminíferos/patologia , Túbulos Seminíferos/efeitos da radiação , Espermatozoides/patologia , Espermatozoides/efeitos da radiação , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/efeitos da radiação , Receptor fas/metabolismo
7.
Toxicol Sci ; 117(2): 457-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20616210

RESUMO

Sertoli cells are essential for testicular germ cell maintenance and survival. We made the unexpected observation that x-radiation (x-ray)-induced germ cell loss is attenuated by co-exposure with the Sertoli cell toxicant 2,5-hexanedione (HD). The mechanisms underlying this attenuation of germ cell apoptosis with reduced Sertoli cell support are unknown. The current study was performed to examine alterations in testicular gene expression with co-exposure to HD and x-ray. Adult male rats were exposed to HD (0.33 or 1%) in the drinking water for 18 days followed by x-ray (2 or 5 Gy), resulting in nine treatment groups. Testis samples were collected after 3 h and total messenger RNA was analyzed using Affymetrix Rat Genome 230 2.0 arrays. Normalized log2-expression values were analyzed using LIMMA and summarized using linear contrasts designed to summarize the aggregated effect, in excess of x-ray alteration, of HD across all treatment groups. These contrasts were compared with the overall linear trend expression for x-ray, to determine whether HD effects were agonistic or antagonistic with respect to x-ray damage. Overrepresentation analysis to identify biological pathways where HD modification of gene expression was the greatest was performed. HD exerted a significant influence on genes involved in cell cycle and cell death/apoptosis. The results of this study provide insight into the mechanisms underlying attenuated germ cell toxicity following HD and x-ray co-exposure through the analysis of co-exposure effects on gene expression, and suggest that HD pre-exposure reduces Sertoli cell supported germ cell proliferation thereby reducing germ cell vulnerability to x-rays.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes cdc , Hexanonas/farmacologia , Protetores contra Radiação/farmacologia , Túbulos Seminíferos/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ratos , Ratos Endogâmicos F344 , Túbulos Seminíferos/patologia , Túbulos Seminíferos/efeitos da radiação , Espermatozoides/patologia , Espermatozoides/efeitos da radiação
8.
Toxicol Appl Pharmacol ; 236(1): 49-58, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19371622

RESUMO

During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH.


Assuntos
Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Propanóis/toxicidade , Alanina Transaminase/sangue , Animais , Western Blotting , Ácido Clodrônico/administração & dosagem , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Injeções Intravenosas , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Lipossomos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Propanóis/administração & dosagem , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA