Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endosc Int Open ; 9(2): E171-E180, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33532555

RESUMO

Background and study aims Colonoscopy is a technically challenging procedure that requires extensive training to minimize discomfort and avoid trauma due to its drive mechanism. Our academic team developed a magnetic flexible endoscope (MFE) actuated by magnetic coupling under supervisory robotic control to enable a front-pull maneuvering mechanism, with a motion controller user interface, to minimize colon wall stress and potentially reduce the learning curve. We aimed to evaluate this learning curve and understand the user experience. Methods Five novices (no endoscopy experience), five experienced endoscopists, and five experienced MFE users each performed 40 trials on a model colon using 1:1 block randomization between a pediatric colonoscope (PCF) and the MFE. Cecal intubation (CI) success, time to cecum, and user experience (NASA task load index) were measured. Learning curves were determined by the number of trials needed to reach minimum and average proficiency-defined as the slowest average CI time by an experienced user and the average CI time by all experienced users, respectively. Results MFE minimum proficiency was achieved by all five novices (median 3.92 trials) and five experienced endoscopists (median 2.65 trials). MFE average proficiency was achieved by four novices (median 14.21 trials) and four experienced endoscopists (median 7.00 trials). PCF minimum and average proficiency levels were achieved by only one novice. Novices' perceived workload with the MFE significantly improved after obtaining minimum proficiency. Conclusions The MFE has a short learning curve for users with no prior experience-requiring relatively few attempts to reach proficiency and at a reduced perceived workload.

2.
Gastrointest Endosc ; 92(3): 770-775, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334018

RESUMO

BACKGROUND AND AIMS: Endoscopic intervention has emerged as a first-line option for management of symptomatic pancreatic necrosis, yet endoscopic debridement is limited by the lack of dedicated endoscopic tools intended for this purpose. The objectives of this study were to design and build a prototype necrosectomy device compatible for use with a flexible endoscope and capable of selective tissue fragmentation, and to test the prototype in benchtop and porcine models. METHODS: A novel prototype, named the waterjet necrosectomy device (WAND), was designed and developed, consisting of a single-use disposable endoscopic waterjet instrument capable of waterjet selection and independent tip articulation while fitting through a 2.8-mm working channel of a standard adult upper GI endoscope. Benchtop, ex vivo, and in vivo (porcine) testing was performed in the initial stages of investigation. RESULTS: The WAND was capable of delivering a continuous waterjet force with a surface pressure of 0.72 bar at a flow rate of 0.37 L/minute. In phase 1 of testing, the WAND was able to achieve complete fragmentation of gelatin as a surrogate for pancreatic necrosis in benchtop testing. In phase 2 of testing, the WAND was able to achieve complete fragmentation of freshly explanted human pancreatic necrosis. In phase 3 of testing for safety in fresh necropsy swine, use of the WAND resulted in no significant tissue trauma, even when irrigation was applied at closer proximity and for more extended duration than would be anticipated in clinical use. CONCLUSION: The WAND prototype delivers irrigation capable of fragmenting necrotic debris ex vivo and avoiding trauma to healthy nontarget tissue. Planning is underway for first-in-human studies to assess the efficacy and safety of the WAND for endoscopic pancreatic necrosectomy.


Assuntos
Pancreatite Necrosante Aguda , Animais , Desbridamento , Modelos Animais de Doenças , Endoscopia do Sistema Digestório , Pancreatite Necrosante Aguda/cirurgia , Suínos
3.
IEEE Robot Autom Lett ; 5(4): 6427-6434, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39156224

RESUMO

Gastric cancer is the third leading cause of cancer deaths worldwide, with most new cases occurring in low and middle income countries, where access to screening programs is hindered by the high cost of conventional endoscopy. The waterjet-actuated HydroJet endoscopic platform was developed as a low-cost, disposable alternative for inspection of the gastric cavity in low-resource settings. In this work, we present a teleoperation scheme and contact detection algorithm that work together to enable intuitive teleoperation of the HydroJet within the confined space of the stomach. Using a geometrically accurate stomach model and realistic anatomical inspection targets, we demonstrate that, using these methods, a novice user can complete a gastroscopy in approximately the same amount of time with the HydroJet as with a conventional endoscope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA