Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769170

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received global attention due to the serious threat it poses to public health. Since the outbreak in December 2019, millions of people have been affected and its rapid global spread has led to an upsurge in the search for treatment. To discover hit compounds that can be used alone or in combination with repositioned drugs, we first analyzed the pharmacokinetic and toxicological properties of natural products from Brazil's semiarid region. After, we analyzed the site prediction and druggability of the SARS-CoV-2 main protease (Mpro), followed by docking and molecular dynamics simulation. The best SARS-CoV-2 Mpro complexes revealed that other sites were accessed, confirming that our approach could be employed as a suitable starting protocol for ligand prioritization, reinforcing the importance of catalytic cysteine-histidine residues and providing new structural data that could increase the antiviral development mainly against SARS-CoV-2. Here, we selected 10 molecules that could be in vitro assayed in response to COVID-19. Two compounds (b01 and b02) suggest a better potential for interaction with SARS-CoV-2 Mpro and could be further studied.


Assuntos
Produtos Biológicos/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/efeitos dos fármacos , Desenho de Fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/efeitos dos fármacos
2.
J Enzyme Inhib Med Chem ; 36(1): 1553-1563, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34251942

RESUMO

A series of 11 new substituted 1,5-dihydro-4,1-benzoxazepine derivatives was synthesised to study the influence of the methyl group in the 1-(benzenesulphonyl) moiety, the replacement of the purine by the benzotriazole bioisosteric analogue, and the introduction of a bulky substituent at position 6 of the purine, on the biological effects. Their inhibition against isolated HER2 was studied and the structure-activity relationships have been confirmed by molecular modelling studies. The most potent compound against isolated HER2 is 9a with an IC50 of 7.31 µM. We have investigated the effects of the target compounds on cell proliferation. The most active compound (7c) against all the tumour cell lines studied (IC50 0.42-0.86 µM) does not produce any modification in the expression of pro-caspase 3, but increases the caspase 1 expression, and promotes pyroptosis.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade
3.
Pharmaceutics ; 13(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070409

RESUMO

Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.

4.
Curr Med Chem ; 28(29): 5884-5895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596793

RESUMO

This article presents a simplified view of integrins with emphasis on the α4 (α4ß1/VLA-4) integrin. Integrins are heterodimeric proteins expressed on the cell surface of leukocytes that participate in a wide variety of functions, such as survival, growth, differentiation, migration, inflammatory responses, tumour invasion, among others. When the extracellular matrix is degraded or deformed, cells are forced to undergo responsive changes that influence remodelling during physiological and pathological events. Integrins recognize these changes and trigger a series of cellular responses, forming a physical connection between the interior and the outside of the cell. The communication of integrins through the plasma membrane occurs in both directions, from the extracellular to the intracellular (outside-in) and from the intracellular to the extracellular (inside-out). Integrins are valid targets for antibodies and small-molecule antagonists. One example is the monoclonal antibody natalizumab, marketed under the name of TYSABRI®, used in the treatment of recurrent multiple sclerosis, which inhibits the adhesion of α4 integrin to its counter-receptor. α4ß1 Integrin antagonists are summarized here, and their utility as therapeutics are also discussed.


Assuntos
Integrina alfa4beta1 , Anticorpos Monoclonais , Adesão Celular , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Leucócitos
5.
J Biomol Struct Dyn ; 39(9): 3115-3127, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338151

RESUMO

Adenosine A2A receptor (A2AR) is the predominant receptor in immune cells, where its activation triggers cAMP-mediated immunosuppressive signaling and the underlying inhibition of T cells activation and T cells-induced effects mediated by cAMP-dependent kinase proteins mechanisms. In this study, were used ADME/Tox, molecular docking and molecular dynamics simulations to investigate selective adenosine A2AR agonists as potential anti-inflammatory drugs. As a result, we obtained two promising compounds (A and B) that have satisfactory pharmacokinetic and toxicological properties and were able to interact with important residues of the A2AR binding cavity and during the molecular dynamics simulations were able to keep the enzyme complexed.Communicated by Ramaswamy H. Sarma.


Assuntos
Preparações Farmacêuticas , Agonistas do Receptor Purinérgico P1 , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento Molecular , Receptor A2A de Adenosina
6.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164183

RESUMO

Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.


Assuntos
Receptores A2 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade
8.
Future Med Chem ; 11(2): 83-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30644318

RESUMO

AIM: Identification of new antiproliferative compounds. METHODOLOGY: Four series of compounds were synthesized by the Mitsunobu reaction. Their antiproliferative activity was studied against several cancer cells and a noncancerous fibroblast cell line. Their apoptotic activity was analyzed using a caspase 3/7 fluorescence assay. RESULTS & CONCLUSION: 9-alkylated-6-halogenated and 2,6-dihalogenated purines show remarkable inhibition of tumor cell proliferation, with the dichloro derivatives being the most potent of all the series. The most promising compound, tetrahydroquinoline 4c, exhibits significant antiproliferative activity against the cancer cells tested, while displaying a 19-fold lower potency against noncancerous fibroblasts, a key feature that indicates potential selectivity against cancer cells. This compound produces a high percentage of apoptosis (58%) after 24 h treatment in human breast cancer MCF-7 cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Purinas/química , Purinas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Halogenação , Humanos , Células MCF-7 , Purinas/síntese química , Quinolinas/síntese química , Relação Estrutura-Atividade
9.
Front Pharmacol ; 9: 798, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093861

RESUMO

New treatment modalities are urgently needed to better manage advanced breast cancer. Combination therapies are usually more effective than monotherapy. In this context, the use of cyclic and acyclic O,N-acetals derivative compounds in combination with the suicide gef gene shown a potent anti-tumor activity and represent a new generation of anticancer agents. Here, we evaluate the use of the gef gene to promote and increase the anti-tumor effect of cyclic and acyclic O,N-acetals purine derivatives and elucidate their mechanisms of action. Among all compounds tested, those with a nitro group and a cyclic pattern structures (FC-30b2, FC-29c, and bozepinib) are the most benefited from the gef gene effect. These compounds, in combination with gef gene, were able to abolish tumor cell proliferation with a minimal dose leading to more effective and less toxic chemotherapy. The effect of this combined therapy is triggered by apoptosis induction which can be found deregulated in the later stage of breast cancer. Moreover, the combined therapy leads to an increase of cell post-apoptotic secondary necrosis that is able to promote the immunogenicity of cancer cells leading to a successful treatment. This data suggests that this novel combination therapy represents a promising candidate for breast cancer treatment.

10.
Future Med Chem ; 9(11): 1129-1140, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28722472

RESUMO

AIM: Bozepinib is a potent and selective anticancer compound which chemical structure is made up of a benzofused seven-membered ring and a purine moiety. We previously demonstrated that the purine fragment does not exert antiproliferative effect per se. METHODOLOGY: A series of 1-(benzenesulfonyl)-4,1-benzoxazepine derivatives were synthesized in order to study the influence of the benzofused seven-membered ring in the biological activity of bozepinib by means of antiproliferative, cell cycle and apoptosis studies. RESULTS & CONCLUSION: Our results show that the methyleneoxy enamine sulfonyl function is essential in the antitumor activity of the structures and thus, it is a scaffold suitable for further modification with a view to obtain more potent antitumor compounds.


Assuntos
Antineoplásicos/síntese química , Azepinas/síntese química , Benzenossulfonatos/síntese química , Antineoplásicos/farmacologia , Apoptose , Azepinas/farmacologia , Benzenossulfonatos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
11.
Future Med Chem ; 9(3): 293-302, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176540

RESUMO

AIM: Cancer is among the leading causes of death worldwide. Medical interest has focused on macrocyclic polyamines because of their properties as antitumor agents. Results/Methodology: We have designed and synthesized a series of 1,2-diaminocyclohexane derivatives with notable in vitro antiproliferative activities against the MCF-7, HCT-116 and A375 cancer cell lines. Cell cycle and apoptosis analyses were also carried out. Our results show that all the compounds are potent cytotoxic agents, especially against the A375 cell line. CONCLUSION: The selective activity of the macrocyclic derivative against A375, via apoptosis, supposes a great advantage for future therapeutic use. This exemplifies the potential of 1,2-diaminocyclohexane derivatives to qualify as lead structures for future anticancer drug development due to their easy syntheses and noteworthy bioactivity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cicloexilaminas/síntese química , Cicloexilaminas/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias do Colo , Cicloexilaminas/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Neoplasias Cutâneas , Relação Estrutura-Atividade
12.
Anticancer Agents Med Chem ; 16(10): 1230-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27025655

RESUMO

The cancer stem cell (CSC) theory is current strategy of cancer treatment. Cancers follow pathways of cancer stem cell such as Notch, Wnt and Hedgehog can be addressed with natural products or synthetic drugs to diminish the chance of new tumours. The cancer growth can also be suppressed by aiming the tumourigenic stem cells alone, instead of targeting at reducing complete tumour dimension. The recurrence of tumours after years of disease-free survival has prompted interest in the concept that cancers may have a stem cell basis. Current assumption holds that < 5% of the tumour mass may be chemo-resistant and radio-resistant, harbouring stem-like properties that impel tumour survival, development, and metastasis. There is intense an investigation to interpret CSCs based on self-renewal and multi-lineage differentiation. Nevertheless, no successful targeted therapies have reached the clinic. The ionophore antibiotic salinomycin that selectively kills breast CSCs seems to be a promising anticancer drug. Clinical trials conducted by the NIH (National Institute of Health) on several synthetic drugs demonstrate the current importance of the issue and predict a bright future for such molecular weapons against cancer.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação
13.
Curr Med Chem ; 22(11): 1312-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620093

RESUMO

Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Imidazóis/farmacologia , Neoplasias/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Proliferação de Células/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Neoplasias/patologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
14.
Mol Cancer Ther ; 14(1): 31-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25487918

RESUMO

Choline kinase α (CHKA; here designated as ChoKα) is the first enzyme in the CDP-choline pathway, implicated in phospholipids metabolism. It is overexpressed in several human tumors such as breast, lung, bladder, colorectal, prostate, ovary, and liver. The overexpression of ChoKα has oncogenic potential and synergizes with other known oncogenes. It has been proposed as a novel cancer drug target with a distinct mechanism of action. We have generated a set of ChoKα inhibitors with potent in vitro antiproliferative and in vivo antitumoral activity against human xenografts in mice, showing high efficacy with low toxicity profiles. Among these inhibitors, RSM-932A has been chosen for further clinical development due to its potent antiproliferative activity in vitro against a large variety of tumor-derived cell lines, a potent in vivo anticancer activity, and lack of toxicity at the effective doses. Here, we provide the preclinical evidence to support the use of RSM-932A as a good candidate to be tested in clinical trials as the "first in humans" drug targeting ChoKα.


Assuntos
Compostos de Anilina/administração & dosagem , Antineoplásicos/administração & dosagem , Colina Quinase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos de Quinolínio/administração & dosagem , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Injeções Intraperitoneais , Camundongos , Neoplasias/metabolismo , Compostos de Quinolínio/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 5(11): 3590-606, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24946763

RESUMO

Identification of novel anticancer drugs presenting more than one molecular target and efficacy against cancer stem-like cells (CSCs) subpopulations represents a therapeutic need to combat the resistance and the high risk of relapse in patients. In the present work we show how Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine], a small anti-tumor compound, demonstrated selectivity on cancer cells and showed an inhibitory effect over kinases involved in carcinogenesis, proliferation and angiogenesis. The cytotoxic effects of Bozepinib were observed in both breast and colon cancer cells expressing different receptor patterns. Bozepinib inhibited HER-2 signaling pathway and JNK and ERKs kinases. In addition, Bozepinib has an inhibitory effect on AKT and VEGF together with anti-angiogenic and anti-migratory activities. Moreover, the modulation of pathways involved in tumorigenesis by Bozepinib was also evident in microarrays analysis. Interestingly, Bozepinib inhibited both mamo- and colono-spheres formation and eliminated ALDH+ CSCs subpopulations at a low micromolar range similar to Salinomycin. Bozepinib induced the down-regulation of c-MYC, ß-CATENIN and SOX2 proteins and the up-regulation of the GLI-3 hedgehog-signaling repressor. Finally, Bozepinib shows in vivo anti-tumor and anti-metastatic efficacy in xenotransplanted nude mice without presenting sub-acute toxicity. These findings support further studies on the therapeutic potential of Bozepinib in cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxazepinas/farmacologia , Purinas/farmacologia , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Feminino , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur J Med Chem ; 76: 118-24, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24583351

RESUMO

As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC50 values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC50 values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Purinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Purinas/química
17.
Eur J Med Chem ; 50: 376-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22373735

RESUMO

Advance in the knowledge of molecular biology has thrown light on many aspects of apoptosis regulation mechanisms. This has allowed a change in anti-cancer therapy trends, from classic cytotoxic strategies to the development of new non-harmful therapies which target the apoptosis response selectively only in tumour cells. We have selected an anthranilic alcohol-derived acyclic 5-fluorouracil O,N-acetal (5) to carry out the anti-cancer studies. This compound shows activity as a potent growth inhibitor of the tumour cell line MCF-7 at a very low concentration. Moreover, when this compound was administered to the non-neoplastic cell line, MCF-10A displayed less toxicity resulting in lower rates of apoptosis. Further studies by microarray hybridization, real-time PCR and western blot showed that when administered to human breast cancer cells, MCF-7, 5 had no activity against classic pro-apoptotic genes such as p53, and even induced the down-regulation of anti-apoptotic genes such as Bcl-2. In contrast, several pro-apoptotic genes related with the endoplasmic reticulum (ER)-stress-induced apoptosis, such as BBC3 and Noxa, appeared up-regulated. These results seem to show that the mechanism of action and selectivity of 5 was via the activation of the ER stress-induced apoptosis. The selective activity of this compound against tumour cells via the ER stress-induced apoptosis supposes a great advantage for future therapeutic use.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fluoruracila/química , Fluoruracila/farmacologia , Biomarcadores Tumorais/metabolismo , Western Blotting , Mama/citologia , Mama/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Humanos , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade
18.
ChemMedChem ; 7(4): 663-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278967

RESUMO

Choline kinase (ChoK) is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. Human ChoK has three isoforms: ChoKα1, α2, and ß. Specific inhibition of ChoKα has been reported to selectively kill tumor cells. In this study, ten new symmetrical bis-pyridinium and bis-quinolinium derivatives were synthesized and tested for their ability to inhibit human ChoKα2. These compounds have electron-releasing groups at position 4 of the pyridinium or quinolinium rings. 1,1'-[(Butane-1,3-diylbis(benzene-1,4-diylmethylene)]bis[4-(4-bromo-N-methylanilino)pyridinium)] dibromide and 1,1'-(biphenyl-3,3'-diylmethylene)bis[7-chloro-4-(perhydroazepine-1-yl)quinolinium] dibromide were identified as highly potent ChoK inhibitors with IC(50) values of 80 nM. Kinetic enzymatic assays indicated a mixed and predominantly competitive mechanism of inhibition for these compounds, which exhibited strong antiproliferative activity (EC(50) 1 µM) against the human breast cancer SKBR3 cell line.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Colina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos de Quinolínio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Feminino , Humanos , Cinética , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Compostos de Quinolínio/síntese química , Relação Estrutura-Atividade
19.
ChemMedChem ; 6(10): 1854-9, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21796794

RESUMO

Herein we report the design, synthesis, and anticancer activity of a series of substituted (R,S)-9-[2- or 3-(3,4-dihydro-2H-1,5-benzoxathiepine-3-yloxy)alkyl]-9H-purines. Derivatives with propylenoxy-linked 2',6'-dichloro- and 6'-bromopurines are more active than their respective ethylenoxy-linked purine conjugates. On the other hand, the compound with a propylenoxy-linked 6'-chloropurine is nearly equipotent to the corresponding ethylenoxy-linked conjugate. Our results show that bromo- and chloropurine-conjugated benzoxathiepines containing a propylenoxy linker are able to inhibit PI3 kinase (PI3K) phosphorylation in MCF-7 breast cancer cells, indicating that the activation of eIF2α, together with inhibition of the PI3K pathway, is the mechanism of action by which these compounds effect their antitumor activity in the MCF-7 cell line; apoptosis was induced in a p53-independent manner.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzotiepinas/química , Purinas/química , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/farmacologia , Estereoisomerismo , Proteína Supressora de Tumor p53/metabolismo
20.
Eur J Med Chem ; 46(9): 3795-801, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21645946

RESUMO

Herein are reported the synthesis and anticancer activity against the human breast cancer cell line MCF-7 of a series of substituted (RS)-9-(2,3-dihydro-1,4-benzoxathiin-2-ylmethyl)-9H-purine derivatives and (RS)-9-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-9H-purine derivatives. When the Mitsunobu reaction was carried out between (RS)-2,3-dihydro-1,4-benzoxathiin-3-methanol and the heterocyclic bases 6-chloro-, 2,6-dichloro, and 6-bromo-purines under microwave-assisted conditions, a formal 1,4-sulfur migration takes place through two consecutive oxyranium and episulfonium rings, giving rise to the corresponding (RS)-9-(2,3-dihydro-1,4-benzodioxin-3-ylmethyl)-9H-purine derivatives, previously reported by us. The most active compound (RS)-2,6-dichloro-9-(2,3-dihydro-1,4-benzoxathiin-2-ylmethyl)-9H-purine shows an IC(50) = 2.75 ± 0.02 µM. When the cancerous cells were treated with this compound, a significant increase of apoptotic cells (70.08 ± 0.33%) was obtained in relation to the control ones. The induction of the G(2)/M cell cycle arrest and apoptosis by the three most active compounds is associated with increased phosphorylation of eIF2α in human breast cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Purinas/síntese química , Purinas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Purinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA