Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796704

RESUMO

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucolipidoses , Neuraminidase , Animais , Dependovirus/genética , Terapia Genética/métodos , Mucolipidoses/terapia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Transdução Genética , Expressão Gênica
2.
J Biol Chem ; 298(10): 102425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030822

RESUMO

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Assuntos
Actinas , Proteínas de Ligação ao Cálcio , Exossomos , Sinteninas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Proteômica , Sinteninas/metabolismo , Humanos , Animais , Camundongos , Multimerização Proteica
3.
Nat Commun ; 10(1): 3623, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399583

RESUMO

Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.


Assuntos
Autofagia/fisiologia , Epigênese Genética , Lisossomos/metabolismo , Biogênese de Organelas , Politetrafluoretileno/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco , Transcrição Gênica
4.
Sci Adv ; 5(7): eaav3270, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328155

RESUMO

Lysosomal exocytosis is a ubiquitous process negatively regulated by neuraminidase 1 (NEU1), a sialidase mutated in the glycoprotein storage disease sialidosis. In Neu1-/- mice, excessive lysosomal exocytosis is at the basis of disease pathogenesis. Yet, the tissue-specific molecular consequences of this deregulated pathway are still unfolding. We now report that in muscle connective tissue, Neu1-/- fibroblasts have features of myofibroblasts and are proliferative, migratory, and exocytose large amounts of exosomes. These nanocarriers loaded with activated transforming growth factor-ß and wingless-related integration site (WNT)/ß-catenin signaling molecules propagate fibrotic signals to other cells, maintaining the tissue in a prolonged transitional status. Myofibroblast-derived exosomes fed to normal fibroblasts convert them into myofibroblasts, changing the recipient cells' proliferative and migratory properties. These findings reveal an unexpected exosome-mediated signaling pathway downstream of NEU1 deficiency that propagates a fibrotic disease and could be implicated in idiopathic forms of fibrosis in humans.


Assuntos
Suscetibilidade a Doenças , Exossomos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Dependovirus/genética , Modelos Animais de Doenças , Exocitose , Fibroblastos/metabolismo , Fibrose/patologia , Fibrose/terapia , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Imuno-Histoquímica , Camundongos , Mucolipidoses , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
Biochim Biophys Acta Gen Subj ; 1862(12): 2879-2887, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251702

RESUMO

BACKGROUND: Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization of protein interactions. METHODS: Here, we have used an integrated biochemical-biophysical approach to determine whether S-palmitoylation contributes to the regulation of extracellular vesicle production in skeletal muscle cells. RESULTS: We ascertained that Alix is S-palmitoylated and that this post-translational modification influences its protein-protein interaction with CD9, a member of the tetraspanin protein family. Furthermore, we showed that the structural organization of the lipid bilayer of the small (nano-sized) extracellular vesicle membrane with altered palmitoylation is qualitatively different compared to mock control vesicles. CONCLUSIONS: We propose that S-palmitoylation regulates the function of Alix in facilitating the interactions among extracellular vesicle-specific regulators and maintains the proper structural organization of exosome-like extracellular vesicle membranes. GENERAL SIGNIFICANCE: Beyond its biological relevance, our study also provides the means for a comprehensive structural characterization of EVs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Lipoilação , Processamento de Proteína Pós-Traducional , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Bicamadas Lipídicas , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico , Transdução de Sinais , Tetraspanina 29/metabolismo
6.
Nat Commun ; 7: 11876, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27336173

RESUMO

Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.


Assuntos
Actomiosina/metabolismo , Barreira Hematoencefálica , Proteínas de Ligação ao Cálcio/fisiologia , Plexo Corióideo/metabolismo , Junções Íntimas/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular , Plexo Corióideo/ultraestrutura , Epêndima/ultraestrutura , Células Epiteliais/ultraestrutura , Hidrocefalia/etiologia , Camundongos , Camundongos Knockout , Proteína da Zônula de Oclusão-1/metabolismo
7.
Sci Adv ; 1(11): e1500603, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26824057

RESUMO

Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf (-/-) mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance.

8.
Mol Genet Metab ; 106(1): 99-103, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22386972

RESUMO

Galactosialidosis is a lysosomal storage disorder caused by loss of function of protective protein cathepsin A, which leads to secondary deficiencies of ß-galactosidase and neuraminidase-1. Emphysema has not been previously reported as a possible complication of this disorder, but we now describe this condition in a 41-year-old, non-smoking male. Our patient did not display deficiency in α-1-antitrypsin, the most common cause of emphysema in non-smokers, which brings about disseminated elastolysis. We therefore hypothesized that loss of cathepsin A activity was responsible because of previously published evidence showing it is prerequisite for normal elastogenesis. We now present experimental evidence to support this theory by demonstrating impaired primary elastogenesis in cultures of dermal fibroblasts from our patient. The obtained data further endorse our previous finding that functional integrity of the cell surface-targeted molecular complex of cathepsin A, neuraminidase-1 and the elastin-binding protein (spliced variant of ß-galactosidase) is prerequisite for the normal assembly of elastic fibers. Importantly, we also found that elastic fiber production was increased after exposure either to losartan, spironolactone, or dexamethasone. Of immediate clinical relevance, our data suggest that surviving patients with galactosialidosis should have periodic assessment of their pulmonary function. We also encourage further experimental exploration of therapeutic potential of the afore-mentioned elastogenesis-stimulating drugs for the alleviation of pathological processes in galactosialidosis that could be mechanistically linked to impaired deposition of elastic fibers.


Assuntos
Catepsina A , Tecido Elástico , Enfisema , Doenças por Armazenamento dos Lisossomos , Adulto , Catepsina A/genética , Catepsina A/metabolismo , Células Cultivadas , Tecido Elástico/enzimologia , Tecido Elástico/crescimento & desenvolvimento , Tecido Elástico/ultraestrutura , Elastina/genética , Elastina/metabolismo , Enfisema/etiologia , Enfisema/patologia , Fibrilinas , Fibroblastos , Expressão Gênica/genética , Humanos , Doenças por Armazenamento dos Lisossomos/complicações , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
9.
J Biol Chem ; 284(41): 28430-28441, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19666471

RESUMO

Lysosomal neuraminidase-1 (NEU1) forms a multienzyme complex with beta-galactosidase and protective protein/cathepsin A (PPCA). Because of its association with PPCA, which acts as a molecular chaperone, NEU1 is transported to the lysosomal compartment, catalytically activated, and stabilized. However, the mode(s) of association between these two proteins both en route to the lysosome and in the multienzyme complex has remained elusive. Here, we have analyzed the hydrodynamic properties of PPCA, NEU1, and a complex of the two proteins and identified multiple binding sites on both proteins. One of these sites on NEU1 that is involved in binding to PPCA can also bind to other NEU1 molecules, albeit with lower affinity. Therefore, in the absence of PPCA, as in the lysosomal storage disease galactosialidosis, NEU1 self-associates into chain-like oligomers. Binding of PPCA can reverse self-association of NEU1 by causing the disassembly of NEU1-oligomers and the formation of a PPCA-NEU1 heterodimeric complex. The identification of binding sites between the two proteins allowed us to create innovative structural models of the NEU1 oligomer and the PPCA-NEU1 heterodimeric complex. The proposed mechanism of interaction between NEU1 and its accessory protein PPCA provides a rationale for the secondary deficiency of NEU1 in galactosialidosis.


Assuntos
Catepsina A/química , Catepsina A/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Neuraminidase/química , Neuraminidase/metabolismo , Conformação Proteica , Multimerização Proteica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catepsina A/genética , Células Cultivadas , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Neuraminidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA