RESUMO
Resumo Fundamento A remodelação adversa dos vasos pulmonares eleva a pressão pulmonar e provoca hipertensão arterial pulmonar (HAP). A HAP resulta em aumento da pós-carga do ventrículo direito (VD), causando hipertrofia ventricular e consequente insuficiência cardíaca. Não existe um tratamento específico para o remodelamento desadaptativo do VD secundário à HAP. Objetivos Este estudo tem como objetivo explorar duas abordagens terapêuticas, o suco de uva (SU) e os hormônios tireoidianos (HT), no tratamento do estresse oxidativo induzido pela HAP e nas alterações funcionais cardíacas. Métodos Parâmetros ecocardiográficos relacionados à resistência dos vasos pulmonares (relação TA/TE), contratilidade do VD (ESPAT) e função diastólica do VD (relação dos picos E/A) foram avaliados. Além disso, foram medidos ROS totais, peroxidação lipídica, enzimas antioxidantes, proteínas de manipulação de cálcio, expressão de proteínas pró-oxidantes e antioxidantes. Valores de p<0,05 foram considerados estatisticamente significativos. Resultados Ambos os tratamentos, com SU e HT, demonstraram uma redução na resistência pulmonar (~22%), além de melhorias na ESPAT (inotropismo ~11%) e na relação TA/TE (~26%) (p<0,05). Não houve alterações entre os grupos na relação do pico de E/A. Embora ROS e TBARS não tenham sido estatisticamente significativos, os tratamentos com SU e HT diminuíram os níveis de xantina oxidase (~49%) e normalizaram a expressão de HSP70 e proteínas de manipulação de cálcio (p<0,05). No entanto, apenas o tratamento com HT melhorou a função diastólica (~50%) e aumentou o imunoconteúdo de NRF2 (~48%) (p<0,05). Conclusões Até onde sabemos, este estudo é pioneiro ao mostrar que o HT administrado em conjunto com o SU promoveu melhorias funcionais e bioquímicas em um modelo de HAP. Além disso, nossos dados sugerem que os tratamentos com SU e HT se mostraram cardioprotetores, sejam combinados ou não, e exibiram seus benefícios ao modular o estresse oxidativo e as proteínas de manipulação do cálcio.
Abstract Background Adverse remodeling of lung vessels elevates pulmonary pressure and provokes pulmonary arterial hypertension (PAH). PAH results in increased right ventricle (RV) afterload, causing ventricular hypertrophy and the onset of heart failure. There is no specific treatment for maladaptive RV remodeling secondary to PAH. Objectives This study aims to explore two therapeutic approaches, grape juice (GJ) and thyroid hormones (TH), on PAH-induced oxidative stress and cardiac functional changes. Methods Parameters of echocardiography related to lung vessel resistance (AT/ET ratio), RV contractility (TAPSE), and RV diastolic function (E/A peaks ratio) were evaluated. Also, total ROS, lipid peroxidation, antioxidant enzymes, calcium handling proteins, pro-oxidant and antioxidant protein expression were measured. Values of p<0.05 were considered statistically significant. Results Both GJ and TH treatments demonstrated reductions in pulmonary resistance (~22%) and improvements in TAPSE (inotropism ~11%) and AT/ET ratio (~26%) (p<0.05). There were no changes amongst groups regarding the E/A peak ratio. Although ROS and TBARS were not statistically significant, GJ and TH treatments decreased xanthine oxidase (~49%) levels and normalized HSP70 and calcium handling protein expression (p<0.05). However, only TH treatment ameliorated diastolic function (~50%) and augmented NRF2 immunocontent (~48%) (p<0.05). Conclusions To the best of our knowledge, this study stands as a pioneer in showing that TH administered together with GJ promoted functional and biochemical improvements in a PAH model. Moreover, our data suggest that GJ and TH treatments were cardioprotective, combined or not, and exhibited their beneficial effects by modulating oxidative stress and calcium-handling proteins.
RESUMO
Oxidative stress is involved in increased pulmonary vascular resistance (PVR) and right ventricular (RV) hypertrophy, characteristics of pulmonary arterial hypertension (PAH). Copaiba oil, an antioxidant compound, could attenuate PAH damage. This study's aim was to determine the effects of copaiba oil on lung oxidative stress, PVR, and mean pulmonary arterial pressure (mPAP) in the monocrotaline (MCT) model of PAH. Male Wistar rats (170 g, n = 7/group) were divided into four groups: control, MCT, copaiba oil, and MCT + copaiba oil (MCT-O). PAH was induced by MCT (60 mg/kg i.p.) and, after 1 week, the treatment with copaiba oil (400 mg/kg/day gavage) was started for 14 days. Echocardiographic and hemodynamic measurements were performed. RV was collected for morphometric evaluations and lungs and the pulmonary artery were used for biochemical analysis. Copaiba oil significantly reduced RV hypertrophy, PVR, mPAP, and antioxidant enzyme activities in the MCT-O group. Moreover, increased nitric oxide synthase and decreased NADPH oxidase activities were observed in the MCT-O group. In conclusion, copaiba oil was able to improve the balance between nitric oxide and reactive oxygen species in lungs and the pulmonary artery and to reduce PVR, which could explain a decrease in RV hypertrophy in this PAH model.
Assuntos
Hipertensão Pulmonar , Óleos Voláteis , Hipertensão Arterial Pulmonar , Ratos , Masculino , Animais , Ratos Wistar , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina/efeitos adversos , Óxido Nítrico , Antioxidantes/farmacologia , Disponibilidade Biológica , Pulmão , Artéria Pulmonar , Hipertensão Pulmonar Primária Familiar , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Óleos Voláteis/farmacologia , Modelos Animais de DoençasRESUMO
In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.
Assuntos
Progressão da Doença , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Tiorredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose , Sobrevivência Celular , Colágeno/metabolismo , Eletrocardiografia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/patologia , Masculino , Monocrotalina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Ratos WistarRESUMO
This study explored the effect of pterostilbene (PTS) complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on right heart function, glutathione and glutaredoxin systems, and the expression of redox-sensitive proteins involved with regulation calcium levels in the experimental model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). After 7 days of PAH induction, rats received daily doses of the PTS:HPßCD complex (corresponding to 25, 50, or 100 mg·kg-1 of PTS) or vehicle (control group, CTR0) (an aqueous solution containing HPßCD; CTR0 and MCT0 (MCT group that did not receive PTS treatment)) via oral administration for 2 weeks. The results showed that the PTS:HPßCD complex increased the content of reduced glutathione and the activity of glutathione-S-transferase and glutaredoxin in the right ventricle (RV) of MCT-treated rats in a dose-dependent manner. Additionally, at higher doses, it also prevented the reduction of stroke volume and cardiac output, prevented myocardial performance index (MPI) increase, reduced lipoperoxidation, reduced total phospholamban, and increased the expression of sarcoplasmic reticulum calcium ATPase in the RV of MCT-treated rats. These results demonstrate that the PTS:HPßCD complex has a dose-dependent antioxidant mechanism that results in improved cardiac function in experimental right heart failure. Our results open a field of possibilities to PTS administration as new therapeutic approach to conventional therapy for right ventricular dysfunction. Novelty Pterostilbene complexed with hydroxypropyl-ß-cyclodextrin could be a new therapeutic approach. Pterostilbene complexed with hydroxypropyl-ß-cyclodextrin reestablishes redox homeostasis through glutathione metabolism modulation, leading to an improved MPI in pulmonary arterial hypertension-provoked right heart failure.
Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Estresse Oxidativo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estilbenos/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Animais , Antioxidantes/farmacologia , Cálcio/metabolismo , Ecocardiografia , Glutationa/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Peroxidação de Lipídeos , Masculino , Monocrotalina , Ratos , Ratos Wistar , Volume SistólicoRESUMO
There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.
Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismoRESUMO
This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction.
Assuntos
Antioxidantes/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores/sangue , Biomarcadores/metabolismo , Fibrose , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Heme Oxigenase-1/química , Heme Oxigenase-1/metabolismo , Injeções Intraperitoneais , Isotiocianatos/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Distribuição Aleatória , Ratos Wistar , SulfóxidosRESUMO
OBJECTIVE: The aim was to assess the neuromodulation techniques effects (repetitive transcranial magnetic stimulation [rTMS] and deep intramuscular stimulation therapy [DIMST]) on pain intensity, peripheral, and neurophysiological biomarkers chronic myofascial pain syndrome (MPS) patients. DESIGN: Randomized, double blind, factorial design, and controlled placebo-sham clinical trial. SETTING: Clinical trial in the Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (NCT02381171). SUBJECTS: We recruited women aged between 19- and 75-year old, with MPS diagnosis. METHODS: Patients were randomized into four groups: rTMS + DIMST, rTMS + sham-DIMST, sham-rTMS + DIMST, sham-rTMS + sham-DIMST; and received 10 sessions for 20 minutes each one (rTMS and DIMST). Pain was assessed by visual analogue scale (VAS); neurophysiological parameters were assessed by transcranial magnetic stimulation; biochemical parameters were: BDNF, S100ß, lactate dehydrogenase, inflammatory (TNF-α, IL6, and IL10), and oxidative stress parameters. RESULTS: We observed the pain relief assessed by VAS immediately assessed before and after the intervention (P < 0.05, F(1,3)= 3.494 and F(1,3)= 4.656, respectively); in the sham-rTMS + DIMST group and both three active groups in relation to sham-rTMS + sham-DIMST group, respectively. There was an increase in the MEP after rTMS + sham-DIMST (P < 0.05). However, there was no change in all-peripheral parameters analyzed across the treatment (P > 0.05). CONCLUSION: Our findings add additional evidence about rTMS and DIMST in relieving pain in MPS patients without synergistic effect. No peripheral biomarkers reflected the analgesic effect of both techniques; including those related to cellular damage. Additionally, one neurophysiological parameter (increased MEP amplitude) needs to be investigated.