Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892025

RESUMO

Pathogenic variants in LMNA have been associated with a wide spectrum of muscular conditions: the laminopathies. LMNA-related congenital muscular dystrophy is a laminopathy characterised by the early onset of symptoms and often leads to a fatal outcome at young ages. Children face a heightened risk of malignant arrhythmias. No established paediatric protocols for managing this condition are available. We review published cases and provide insights into disease progression in two twin sisters with LMNA-related muscular dystrophy. Our objective is to propose a cardiac surveillance and management plan tailored specifically for paediatric patients. We present a family of five members, including two twin sisters with LMNA-related muscular dystrophy. A comprehensive neuromuscular and cardiac work-up was performed in all family members. Genetic analysis using massive sequencing technology was performed in both twins. Clinical assessment showed that only the twins showed diagnoses of LMNA-related muscular dystrophy. Follow-up showed an early onset of symptoms and life-threatening arrhythmias, with differing disease progressions despite both twins passing away. Genetic analysis identified a de novo rare missense deleterious variant in the LMNA gene. Other additional rare variants were identified in genes associated with myasthenic syndrome. Early-onset neuromuscular symptoms could be related to a prognosis of worse life-threatening arrhythmias in LMNA related muscular dystrophy. Being a carrier of other rare variants may be a modifying factor in the progression of the phenotype, although further studies are needed. There is a pressing need for specific cardiac recommendations tailored to the paediatric population to mitigate the risk of malignant arrhythmias.


Assuntos
Lamina Tipo A , Distrofias Musculares , Gêmeos Monozigóticos , Humanos , Lamina Tipo A/genética , Gêmeos Monozigóticos/genética , Feminino , Distrofias Musculares/genética , Distrofias Musculares/terapia , Masculino , Criança , Linhagem , Pré-Escolar , Arritmias Cardíacas/genética , Arritmias Cardíacas/etiologia
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612618

RESUMO

Dilated cardiomyopathy is a heterogeneous entity that leads to heart failure and malignant arrhythmias. Nearly 50% of cases are inherited; therefore, genetic analysis is crucial to unravel the cause and for the early identification of carriers at risk. A large number of variants remain classified as ambiguous, impeding an actionable clinical translation. Our goal was to perform a comprehensive update of variants previously classified with an ambiguous role, applying a new algorithm of already available tools. In a cohort of 65 cases diagnosed with dilated cardiomyopathy, a total of 125 genetic variants were classified as ambiguous. Our reanalysis resulted in the reclassification of 12% of variants from an unknown to likely benign or likely pathogenic role, due to improved population frequencies. For all the remaining ambiguous variants, we used our algorithm; 60.9% showed a potential but not confirmed deleterious role, and 24.5% showed a potential benign role. Periodically updating the population frequencies is a cheap and fast action, making it possible to clarify the role of ambiguous variants. Here, we perform a comprehensive reanalysis to help to clarify the role of most of ambiguous variants. Our specific algorithms facilitate genetic interpretation in dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/genética , Algoritmos , Frequência do Gene
3.
Front Cardiovasc Med ; 10: 1164028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082456

RESUMO

Long QT Syndrome (LQTS) is a rare, inherited channelopathy characterized by cardiac repolarization dysfunction, leading to a prolonged rate-corrected QT interval in patients who are at risk for malignant ventricular tachyarrhythmias, syncope, and even sudden cardiac death. A complex genetic origin, variable expressivity as well as incomplete penetrance make the diagnosis a clinical challenge. In the last 10 years, there has been a continuous improvement in diagnostic and personalized treatment options. Therefore, several factors such as sex, age diagnosis, QTc interval, and genetic background may contribute to risk stratification of patients, but it still currently remains as a main challenge in LQTS. It is widely accepted that sex is a risk factor itself for some arrhythmias. Female sex has been suggested as a risk factor in the development of malignant arrhythmias associated with LQTS. The existing differences between the sexes are only manifested after puberty, being the hormones the main inducers of arrhythmias. Despite the increased risk in females, no more than 10% of the available publications on LQTS include sex-related data concerning the risk of malignant arrhythmias in females. Therein, the relevance of our review data update concerning women and LQTS.

4.
Transl Res ; 259: 72-82, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37105319

RESUMO

Arrhythmogenic cardiomyopathy is a rare inherited entity, characterized by a progressive fibro-fatty replacement of the myocardium. It leads to malignant arrhythmias and a high risk of sudden cardiac death. Incomplete penetrance and variable expressivity are hallmarks of this arrhythmogenic cardiac disease, where the first manifestation may be syncope and sudden cardiac death, often triggered by physical exercise. Early identification of individuals at risk is crucial to adopt protective and ideally personalized measures to prevent lethal episodes. The genetic analysis identifies deleterious rare variants in nearly 70% of cases, mostly in genes encoding proteins of the desmosome. However, other factors may modulate the phenotype onset and outcome of disease, such as microRNAs. These small noncoding RNAs play a key role in gene expression regulation and the network of cellular processes. In recent years, data focused on the role of microRNAs as potential biomarkers in arrhythmogenic cardiomyopathy have progressively increased. A better understanding of the functions and interactions of microRNAs will likely have clinical implications. Herein, we propose an exhaustive review of the literature regarding these noncoding RNAs, their versatile mechanisms of gene regulation and present novel targets in arrhythmogenic cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , MicroRNAs , Humanos , MicroRNAs/genética , Predisposição Genética para Doença , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Biomarcadores , Morte Súbita Cardíaca/etiologia
5.
Front Cell Dev Biol ; 11: 1142937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968203

RESUMO

Introduction: LMNA-related muscular dystrophy is a rare entity that produce "laminopathies" such as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.

6.
Glob Cardiol Sci Pract ; 2023(1): e202308, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36890841

RESUMO

A post-mortem genetic analysis in the process of investigating a sudden death episode is known as 'molecular autopsy'. It is usually performed in cases without a conclusive cause of death and after a comprehensive medico-legal autopsy. In these sudden unexplained death cases, an underlying inherited arrhythmogenic cardiac disease is the main suspected cause of death. The objective is to unravel a genetic diagnosis of the victim, but it also enables cascade genetic screening of the victim's relatives. Early identification of a deleterious genetic alteration associated with an inherited arrhythmogenic disease may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death. It is important to remark that the first symptom of an inherited arrhythmogenic cardiac disease may the malignant arrhythmia and even sudden death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis. Close interaction between the forensic scientist, pathologist, cardiologist, pediatric cardiologist and geneticist has allowed a progressive increase of genetic yield in recent years, identifying the pathogenic genetic alteration. However, large numbers of rare genetic alterations remain classified as having an ambiguous role, impeding a proper genetic interpretation and useful translation into both forensic and cardiological arena.

7.
Front Med (Lausanne) ; 10: 1118585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844202

RESUMO

In the forensic medicine field, molecular autopsy is the post-mortem genetic analysis performed to attempt to unravel the cause of decease in cases remaining unexplained after a comprehensive forensic autopsy. This negative autopsy, classified as negative or non-conclusive, usually occurs in young population. In these cases, in which the cause of death is unascertained after a thorough autopsy, an underlying inherited arrhythmogenic syndrome is the main suspected cause of death. Next-generation sequencing allows a rapid and cost-effectives genetic analysis, identifying a rare variant classified as potentially pathogenic in up to 25% of sudden death cases in young population. The first symptom of an inherited arrhythmogenic disease may be a malignant arrhythmia, and even sudden death. Early identification of a pathogenic genetic alteration associated with an inherited arrhythmogenic syndrome may help to adopt preventive personalized measures to reduce risk of malignant arrhythmias and sudden death in the victim's relatives, at risk despite being asymptomatic. The current main challenge is a proper genetic interpretation of variants identified and useful clinical translation. The implications of this personalized translational medicine are multifaceted, requiring the dedication of a specialized team, including forensic scientists, pathologists, cardiologists, pediatric cardiologists, and geneticists.

8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768439

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium. Deleterious variants in desmosomal genes are the main cause of ACM and lead to common and gene-specific molecular alterations, which are not yet fully understood. This article presents the first systematic in vitro study describing gene and protein expression alterations in desmosomes, electrical conduction-related genes, and genes involved in fibrosis and adipogenesis. Moreover, molecular and functional alterations in calcium handling were also characterized. This study was performed d with HL1 cells with homozygous knockouts of three of the most frequently mutated desmosomal genes in ACM: PKP2, DSG2, and DSC2 (generated by CRISPR/Cas9). Moreover, knockout and N-truncated clones of DSP were also included. Our results showed functional alterations in calcium handling, a slower calcium re-uptake was observed in the absence of PKP2, DSG2, and DSC2, and the DSP knockout clone showed a more rapid re-uptake. We propose that the described functional alterations of the calcium handling genes may be explained by mRNA expression levels of ANK2, CASQ2, ATP2A2, RYR2, and PLN. In conclusion, the loss of desmosomal genes provokes alterations in calcium handling, potentially contributing to the development of arrhythmogenic events in ACM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cálcio , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Miocárdio/metabolismo , Coração
9.
J Clin Med ; 11(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956023

RESUMO

Brugada syndrome (BrS) is classified as an inherited cardiac channelopathy attributed to dysfunctional ion channels and/or associated proteins in cardiomyocytes rather than to structural heart alterations. However, hearts of some BrS patients exhibit slight histologic abnormalities, suggesting that BrS could be a phenotypic variant of arrhythmogenic cardiomyopathy. We performed a systematic review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA) criteria. Our comprehensive analysis of structural findings did not reveal enough definitive evidence for reclassification of BrS as a cardiomyopathy. The collection and comprehensive analysis of new cases with a definitive BrS diagnosis are needed to clarify whether some of these structural features may have key roles in the pathophysiological pathways associated with malignant arrhythmogenic episodes.

10.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923560

RESUMO

Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopathy (e.g., athlete's heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy (e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated cardiomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to the issues related to the assessment of the significance of the genetic variants.


Assuntos
Cardiomiopatias/genética , Morte Súbita Cardíaca/patologia , Erros de Diagnóstico , Testes Genéticos/métodos , Biópsia/métodos , Biópsia/normas , Cardiomiopatias/patologia , Medicina Legal/métodos , Medicina Legal/normas , Testes Genéticos/normas , Humanos
11.
Sci Rep ; 11(1): 7517, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824379

RESUMO

The left ventricular (LV) ejection fraction (EF) is key to prognosis in dilated cardiomyopathy (DCM). Circulating microRNAs have emerged as reliable biomarkers for heart diseases, included DCM. Clinicians need improved tools for greater clarification of DCM EF categorization, to identify high-risk patients. Thus, we investigated whether microRNA profiles can categorize DCM patients based on their EF. 179-differentially expressed circulating microRNAs were screened in two groups: (1) non-idiopathic DCM; (2) idiopathic DCM. Then, 26 microRNAs were identified and validated in the plasma of ischemic-DCM (n = 60), idiopathic-DCM (n = 55) and healthy individuals (n = 44). We identified fourteen microRNAs associated with echocardiographic variables that differentiated idiopathic DCM according to the EF degree. A predictive model of a three-microRNA (miR-130b-3p, miR-150-5p and miR-210-3p) combined with clinical variables (left bundle branch block, left ventricle end-systolic dimension, lower systolic blood pressure and smoking habit) was obtained for idiopathic DCM with a severely reduced-EF. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. Bioinformatics analysis revealed that miR-150-5p and miR-210-3p target genes might interact with each other with a high connectivity degree. In conclusion, our results revealed a three-microRNA signature combined with clinical variables that highly discriminate idiopathic DCM categorization. This is a potential novel prognostic biomarker with high clinical value.


Assuntos
Cardiomiopatia Dilatada/genética , MicroRNA Circulante/genética , Volume Sistólico/genética , Idoso , Biomarcadores/sangue , Cardiomiopatia Dilatada/fisiopatologia , MicroRNA Circulante/sangue , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Plasma , Prognóstico , Curva ROC , Volume Sistólico/fisiologia , Transcriptoma/genética , Disfunção Ventricular Esquerda/complicações , Função Ventricular Esquerda
12.
J Pers Med ; 11(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671899

RESUMO

The RBM20 gene encodes the muscle-specific splicing factor RNA-binding motif 20, a regulator of heart-specific alternative splicing. Nearly 40 potentially deleterious variants in RBM20 have been reported in the last ten years, being found to be associated with highly arrhythmogenic events in familial dilated cardiomyopathy. Frequently, malignant arrhythmias can be a primary manifestation of disease. The early recognition of arrhythmic genotypes is crucial in avoiding lethal episodes, as it may have an impact on the adoption of personalized preventive measures. Our study performs a comprehensive update of data concerning rare variants in RBM20 that are associated with malignant arrhythmogenic phenotypes with a focus on personalized medicine.

13.
Front Pediatr ; 8: 601708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33692971

RESUMO

Aim: To perform a comprehensive phenotype-genotype correlation of all rare variants in Triadin leading to malignant arrhythmias in pediatrics. Methods: Triadin knockout syndrome is a rare entity reported in pediatric population. This syndrome is caused by rare variants in the TRDN gene. Malignant ventricular arrhythmias and sudden cardiac death can be a primary manifestation of disease. Although pharmacological measures are effective, some patients require an implantable defibrillator due to high risk of arrhythmogenic episodes. Main Results: Fourteen rare genetic alterations in TRDN have been reported to date. All of these potentially pathogenic alterations are located in a specific area of TRDN, highlighting this hot spot as an arrhythmogenic gene region. Conclusions: Early recognition and comprehensive interpretation of alterations in Triadin are crucial to adopt preventive measures and avoid malignant arrhythmogenic episodes in pediatric population.

14.
Am Heart J ; 220: 213-223, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31864099

RESUMO

BACKGROUND: Cardiogenic syncope in Brugada syndrome (BrS) increases the risk of major events. Nevertheless, clinical differentiation between cardiogenic and vasovagal syncope can be challenging. We characterized the long-term incidence of major events in a large cohort of BrS patients who presented with syncope. METHODS: From a total of 474 patients, syncope was the initial manifestation in 135 (28.5%) individuals (43.9 ±â€¯13.9 years, 71.1% male). The syncope was classified prospectively as cardiogenic, vasovagal, or undefined if unclear characteristics were present. Clinical, electrocardiographic, genetic, and electrophysiologic features were analyzed. Cardiogenic syncope, sustained ventricular arrhythmias, and sudden death were considered major events in follow-up. RESULTS: In 66 patients (48.9%), the syncope was cardiogenic; in 51 (37.8%), vasovagal and in 18 (13.3%); undefined. The electrophysiology study (EPS) inducibility was more frequent in patients with cardiogenic syncope and absent in all patients with undefined syncope (28 [53.8%] vs 5 [12.2%] vs 0 [0%]; P < .01). During follow-up (7.7 ±â€¯5.6 years), only patients with cardiogenic syncope presented major events (16 [11.9%]). Among patients with inducible EPS, 7 (21.2%) presented major events (P = .04). The negative predictive value of the EPS for major events was 92.4%. The incidence rate of major events was 2.6% person-year. Parameters associated with major events included cardiogenic syncope (hazard ratio [HR] 6.3; 95% CI 1.1-10.4; P = .05), spontaneous type 1 electrocardiogram (HR 3.7; 95% CI 1.3-10.5; P = .01), and inducible EPS (HR 2.8; 95% CI 1.1-8.8; P = .05). CONCLUSIONS: An accurate syncope classification is crucial in BrS patients for risk stratification. In patients with syncope of unclear characteristics, the EPS may be helpful to prevent unnecessary implantable cardioverter defibrillators.


Assuntos
Síndrome de Brugada/complicações , Síncope/etiologia , Adulto , Arritmias Cardíacas/etiologia , Síndrome de Brugada/fisiopatologia , Morte Súbita Cardíaca/etiologia , Desfibriladores Implantáveis , Eletrocardiografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Valor Preditivo dos Testes , Prevalência , Síncope/classificação , Síncope/epidemiologia , Síncope/fisiopatologia , Síncope Vasovagal/epidemiologia , Síncope Vasovagal/etiologia , Síncope Vasovagal/fisiopatologia , Teste da Mesa Inclinada
15.
J Am Coll Cardiol ; 72(22): 2747-2757, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30497561

RESUMO

BACKGROUND: The prevalence and significance of structural abnormalities in Brugada syndrome (BrS) are still largely debated. OBJECTIVES: The authors investigated the relationship between genetic background, electroanatomic abnormalities, and pathologic substrate in BrS. METHODS: They performed 3-dimensional electroanatomic unipolar and bipolar mapping in 30 patients with BrS. Twenty patients underwent 3-dimensional electroanatomic unipolar and bipolar mapping-guided right ventricular outflow tract (RVOT) endomyocardial biopsy. Programmed ventricular stimulation and genetic analysis were performed in all patients. RESULTS: Low-voltage areas (LVAs) were observed at unipolar map in 93% of patients and at bipolar map in 50% of cases. Unipolar LVAs were always larger than bipolar LVAs, were always colocalized, and in all cases included RVOT. Disease-causing mutations were detected in 10 (33%) patients. Programmed ventricular stimulation was positive in 16 cases (53%). In 75% of patients, RVOT histology showed pathologic findings with myocardial inflammation in 80% of them. Among patients with abnormal bipolar map submitted to endomyocardial biopsy, 9 (81%) showed evidence of myocardial inflammation. Conversely, bipolar map was abnormal in 83% of patients with myocardial inflammation. Myocardial inflammation was also more prevalent among inducible patients (83% vs. 25% in noninducible; p = 0.032). CONCLUSIONS: BrS is characterized by electroanatomical and structural abnormalities localized to RVOT with a gradient of the pathologic substrate from epicardium to endocardium possibly driven by myocardial inflammation. These findings reclassify BrS as a combination of structural and electrical defects opening the way to new risk stratification and therapeutic strategies.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Síndrome de Brugada/diagnóstico por imagem , Síndrome de Brugada/fisiopatologia , Imageamento Tridimensional/métodos , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Adulto , Síndrome de Brugada/terapia , Desfibriladores Implantáveis , Eletrocardiografia/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Obstrução do Fluxo Ventricular Externo/terapia
16.
Arch. cardiol. Méx ; 88(4): 306-312, oct.-dic. 2018. tab
Artigo em Espanhol | LILACS | ID: biblio-1124152

RESUMO

Resumen Actualmente hay un porcentaje importante de autopsias que quedan sin un diag nóstico concluyente del fallecimiento, especialmente cuando este evento letal se produce súbitamente. El análisis genético se ha ido incorporando recientemente al campo de la medicina forense, sobre todo en aquellos pacientes que han fallecido de forma repentina, y donde no se identifica causa concluyente del fallecimiento tras una autopsia médico-legal completa. En estos casos las enfermedades eléctricas primarias son las principales responsables del fallecimiento. Hasta la fecha se han descrito más de 40 genes asociados a afecciones arritmogénicas causantes de muerte súbita cardiaca. Las principales enfermedades arritmogénicas son el síndrome de QT largo y la taquicardia ventricular; estudios genéticos post-mortem no solo permiten llevar a cabo un diagnóstico de la causa del fallecimiento, sino que también permiten una traslación clínica hacia los familiares, focalizado en la identificación precoz de individuos en riesgo de síncope, así como adopción de medidas terapéuticas personalizadas para la prevención de un episodio arrítmico letal.


Abstract Currently, there are a significant percentage of autopsies left without a conclusive diagnosis of death, especially when this lethal event occurs suddenly. Genetic analysis has been recently incorporated into the field of forensic medicine, especially in patients with sudden death and where no conclusive cause of death is identified after a complete medical- legal autopsy. Inherited arrhythmogenic diseases are the main cause of death in these cases. To date, more than 40 genes have been associated with arrhythmogenic disease, and causing sudden cardiac death has been described. The main arrhythmogenic diseases are Long QT Syndrome, Catecholaminergic Polymorphic Ventricular Tachycardia, Brugada Syndrome, and Short QT Syndrome. These post-mortem genetic studies, not only allow a diagnosis of the cause of death, but also allow a clinical translation in relatives, focusing on the early identification of individuals at risk of syncope, as well as adopting personalised therapeutic measures for the prevention of a lethal arrhythmic episode.


Assuntos
Humanos , Arritmias Cardíacas/complicações , Autopsia/métodos , Morte Súbita Cardíaca/etiologia , Arritmias Cardíacas/genética , Síncope/etiologia
17.
Front Cardiovasc Med ; 5: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420954

RESUMO

Short QT syndrome is a highly malignant inherited cardiac disease characterized by ventricular tachyarrhythmias leading to syncope and sudden cardiac death. It is responsible of lethal episodes in young people, mainly infants. International guidelines establish diagnostic criteria with the presence of a QTc ≤ 340 ms in the electrocardiogram despite clinical diagnostic values remain controversial. In last years, clinical diagnosis, risk stratification as well as preventive therapies have been improved due to identification of pathophysiological mechanisms. The only effective option is implantation of a defibrillator despite Quinidine may be at times an effective option. Currently, a limited number of rare variants have been identified in seven genes, which account for nearly 20-30% of families. However, some of these variants are associated with phenotypes showing a shorter QT interval but no conclusive diagnosis of Short QT syndrome. Therefore, an exhaustive interpretation of each variant and a close genotype-phenotype correlation is necessary before clinical translation. Here, we review the main clinical and genetic hallmarks of this rare entity.

18.
Clin Res Cardiol ; 106(6): 393-400, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28303324

RESUMO

Short QT syndrome is a malignant cardiac disease characterized by the presence of ventricular tachyarrhythmias leading to syncope and sudden cardiac death. Currently, international guidelines establish diagnostic criteria when QTc is below 340 ms. This entity is one of the main diseases responsible for sudden cardiac death in the pediatric population. In recent years, clinical, genetic and molecular advances in pathophysiological mechanisms related to short QT syndrome have improved diagnosis, risk stratification, and preventive measures. Despite these advances, automatic implantable cardiac defibrillator remains the most effective measure. Currently, six genes have been associated with short QT syndrome, which account for nearly 60% of clinically diagnosed families. Here, we review the main clinical hallmarks of the disease, focusing on the pediatric population.


Assuntos
Arritmias Cardíacas/terapia , Morte Súbita Cardíaca/etiologia , Síncope/etiologia , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Criança , Desfibriladores Implantáveis , Eletrocardiografia , Humanos , Guias de Prática Clínica como Assunto
20.
Int J Legal Med ; 131(2): 393-409, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27654714

RESUMO

Sudden cardiac death (SCD) in a young athlete represents a dramatic event, and an increasing number of medico-legal cases have addressed this topic. In addition to representing an ethical and medico-legal responsibility, prevention of SCD is directly correlated with accurate eligibility/disqualification decisions, with an inappropriate pronouncement in either direction potentially leading to legal controversy. This review summarizes the common causes of SCD in young athletes, divided into structural (hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, congenital coronary artery anomalies, etc.), electrical (Brugada, congenital LQT, Wolf-Parkinson-White syndrome, etc.), and acquired cardiac abnormalities (myocarditis, etc.). In addition, the roles of hereditary cardiac anomalies in SCD in athletes and the effects of a positive result on them and their families are discussed. The medico-legal relevance of pre-participation screening is analyzed, and recommendations from the American Heart Association and European Society of Cardiology are compared. Finally, the main issues concerning the differentiation between physiologic cardiac adaptation in athletes and pathologic findings and, thereby, definition of the so-called gray zone, which is based on exact knowledge of the mechanism of cardiac remodeling including structural or functional adaptions, will be addressed.


Assuntos
Atletas , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Ecocardiografia , Eletrocardiografia , Cardiopatias/complicações , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Consentimento Livre e Esclarecido/legislação & jurisprudência , Responsabilidade Legal , Programas de Rastreamento/legislação & jurisprudência , Anamnese , Exame Físico , Guias de Prática Clínica como Assunto , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA