Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 105(3): 166-178, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38164582

RESUMO

Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.


Assuntos
Aciltransferases , Produtos Biológicos , Vias Biossintéticas , Ceramidas/metabolismo , Sistemas de Liberação de Medicamentos
2.
Breast Cancer Res ; 23(1): 76, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315513

RESUMO

BACKGROUND: Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS: Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS: The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS: Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.


Assuntos
Movimento Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Quinases da Família src/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/antagonistas & inibidores
4.
FASEB J ; 35(3): e21396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583073

RESUMO

We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.


Assuntos
Ceramidas/fisiologia , Doxorrubicina/farmacologia , Proteína Fosfatase 1/fisiologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células HeLa , Humanos
5.
FASEB J ; 35(2): e21287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423335

RESUMO

Regulation of sphingolipid metabolism plays a role in cellular homeostasis, and dysregulation of these pathways is involved in cancer progression. Previously, our reports identified ceramide as an anti-metastatic lipid. In the present study, we investigated the biochemical alterations in ceramide-centered metabolism of sphingolipids that were associated with metastatic potential. We established metastasis-prone sublines of SKOV3 ovarian cancer cells using an in vivo selection method. These cells showed decreases in ceramide levels and ceramide synthase (CerS) 2 expression. Moreover, CerS2 downregulation in ovarian cancer cells promoted metastasis in vivo and potentiated cell motility and invasiveness. Moreover, CerS2 knock-in suppressed the formation of lamellipodia required for cell motility in this cell line. In order to define specific roles of ceramide species in cell motility controlled by CerS2, the effect of exogenous long- and very long-chain ceramide species on the formation of lamellipodia was evaluated. Treatment with distinct ceramides increased cellular ceramides and had inhibitory effects on the formation of lamellipodia. Interestingly, blocking the recycling pathway of ceramides by a CerS inhibitor was ineffective in the suppression of exogenous C24:1 -ceramide for the formation of lamellipodia. These results suggested that C24:1 -ceramide, a CerS2 metabolite, predominantly suppresses the formation of lamellipodia without the requirement for deacylation/reacylation. Moreover, knockdown of neutral ceramidase suppressed the formation of lamellipodia concomitant with upregulation of C24:1 -ceramide. Collectively, the CerS2-C24:1 -ceramide axis, which may be countered by neutral ceramidase, is suggested to limit cell motility and metastatic potential. These findings may provide insights that lead to further development of ceramide-based therapy and biomarkers for metastatic ovarian cancer.


Assuntos
Movimento Celular , Ceramidas/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Pseudópodes/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Ceramidas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Pseudópodes/efeitos dos fármacos , Esfingosina N-Aciltransferase/antagonistas & inibidores , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
6.
FASEB J ; 34(6): 7610-7630, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307766

RESUMO

Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.


Assuntos
Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ceramidas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Esfingomielina Fosfodiesterase/metabolismo
7.
PLoS One ; 14(10): e0223572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31589646

RESUMO

We recently introduced a MαCD-based method to efficiently replace virtually the entire population of plasma membrane outer leaflet phospholipids and sphingolipids of cultured mammalian cells with exogenous lipids (Li et al, (2016) Proc. Natl. Acad. Sci USA 113:14025-14030). Here, we show if the lipid-to- MαCD ratio is too high or low, cells can round up and develop membrane leakiness. We found that this cell damage can be reversed/prevented if cells are allowed to recover from the exchange step by incubation in complete growth medium. After exchange and transfer to complete growth medium cell growth was similar to that of untreated cells. In some cases, cell damage was also prevented by carrying out exchange at close to room temperature (rather than at 37°C). Exchange with lipids that do (sphingomyelin) or do not (unsaturated phosphatidylcholine) support a high level of membrane order in lipid vesicles had the analogous effect on plasma membrane order, confirming exogenous lipid localization in the plasma membrane. Importantly, changes in lipid composition and plasma membrane properties after exchange and recovery persisted for several hours. Thus, it should be possible to use lipid exchange to investigate the effect of plasma membrane lipid composition upon several aspects of membrane structure and function.


Assuntos
Membrana Celular/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , beta-Ciclodextrinas/farmacologia , Animais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Gotículas Lipídicas/metabolismo , Coelhos
8.
J Lipid Res ; 60(11): 1841-1850, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243119

RESUMO

Sphingolipids contribute to the regulation of cell and tissue homeostasis, and disorders of sphingolipid metabolism lead to diseases such as inflammation, stroke, diabetes, and cancer. Sphingolipid metabolic pathways involve an array of enzymes that reside in specific subcellular organelles, resulting in the formation of many diverse sphingolipids with distinct molecular species based on the diversity of the ceramide (Cer) structure. In order to probe compartment-specific metabolism of sphingolipids in this study, we analyzed the Cer and SM species preferentially produced in the inner plasma membrane (PM), Golgi apparatus, ER, mitochondria, nucleus, and cytoplasm by using compartmentally targeted bacterial SMases and ceramidases. The results showed that the length of the acyl chain of Cer becomes longer according to the progress of Cer from synthesis in the ER to the Golgi apparatus, then to the PM. These findings suggest that each organelle shows different properties of SM-derived Cers consistent with its emerging distinct functions in vitro and in vivo.


Assuntos
Ceramidases/metabolismo , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos
9.
Chem Phys Lipids ; 216: 142-151, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266560

RESUMO

In the last 30 years, ceramides have been found to mediate a myriad of biological processes. Ceramides have been recognized as bioactive molecules and their metabolizing enzymes are attractive targets in cancer therapy and other diseases. The molecular mechanism of action of cellular ceramides are still not fully established, with insights into roles through modification of lipid rafts, creation of ceramide platforms, ceramide channels, or through regulation of direct protein effectors such as protein phosphatases and kinases. Recently, the 'Many Ceramides' hypothesis focuses on distinct pools of subcellular ceramides and ceramide species as potential defined bioactive entities. Traditional methods that measure changes in ceramide levels in the whole cell, such as mass spectrometry, fluorescent ceramide analogues, and ceramide antibodies, fail to differentiate specific bioactive species at the subcellular level. However, a few ceramide binding proteins have been reported, and a smaller subgroup within these, have been shown to translocate to ceramide-enriched membranes, revealing these localized pools of bioactive ceramides. In this review we want to discuss and consolidate these works and explore the possibility of defining these binding proteins as new tools are emerging to visualize bioactive ceramides in cells. Our goal is to encourage the scientific community to explore these ceramide partners, to improve techniques to refine the list of these binding partners, making possible the identification of specific domains that recognize and bind ceramides to be used to visualize the 'Many Ceramides' in the cell.


Assuntos
Ceramidas/análise , Ceramidas/metabolismo , Animais , Humanos
10.
J Lipid Res ; 59(11): 2116-2125, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30154232

RESUMO

Ceramidases hydrolyze ceramides into sphingosine and fatty acids, with sphingosine being further metabolized into sphingosine-1-phosphate (S1P); thus, ceramidases control the levels of these bioactive sphingolipids in cells and tissues. Neutral ceramidase (nCDase) is highly expressed in colorectal tissues, and a recent report showed that nCDase activity is involved in Wnt/ß-catenin signaling. In addition, the inhibition of nCDase decreases the development and progression of colorectal tumor growth. Here, to determine the action of nCDase in colorectal cancer cells, we focused on the subcellular localization and metabolic functions of this enzyme in HCT116 cells. nCDase was found to be located in both the plasma membrane and in the Golgi apparatus, but it had minimal effects on basal levels of ceramide, sphingosine, or S1P. Cells overexpressing nCDase were protected from the cell death and Golgi fragmentation induced by C6-ceramide, and they showed reduced levels of C6-ceramide and higher levels of S1P and sphingosine. Furthermore, compartment-specific metabolic functions of the enzyme were probed using C6-ceramide and Golgi-targeted bacterial SMase (bSMase) and bacterial ceramidase (bCDase). The results showed that Golgi-specific bCDase also demonstrated resistance against the cell death stimulated by C6-ceramide, and it catalyzed the metabolism of ceramides and produced sphingosine in the Golgi. Targeting bSMase to the Golgi resulted in increased levels of ceramide that were attenuated by the expression of nCDase, also supporting its ability to metabolize Golgi-generated ceramide. These results are critical in understanding the functions of nCDase actions in colorectal cancer cells as well as the compartmentalized pathways of sphingolipid metabolism.


Assuntos
Complexo de Golgi/metabolismo , Ceramidase Neutra/metabolismo , Apoptose/fisiologia , Western Blotting , Membrana Celular/metabolismo , Sobrevivência Celular/fisiologia , Neoplasias do Colo/metabolismo , Células HCT116 , Humanos , Metabolismo dos Lipídeos/fisiologia , Microscopia Confocal , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
11.
Sci Rep ; 7: 42157, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28191815

RESUMO

The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC). CB expression on human normal and BC specimens was tested by immunohistochemistry. Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling. CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour. Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism. Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements. CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (-50 ± 3%) and sphingosine 1-phosphate (S1P, -40 ± 4%), which ended up to reduction in cell motility (-46 ± 5%) with inhibition of p-SRC. CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility. CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility.


Assuntos
Carcinoma de Células de Transição/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Esfingolipídeos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Apoptose/efeitos dos fármacos , Bioensaio , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Cicatrização/efeitos dos fármacos , Quinases da Família src/genética , Quinases da Família src/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-27697478

RESUMO

Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Animais , Apoptose/fisiologia , Membrana Celular/metabolismo , Ceramidas/metabolismo , Humanos , Mitofagia/fisiologia , Transdução de Sinais/fisiologia
13.
Chem Phys Lipids ; 197: 45-59, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26200918

RESUMO

Sphingolipids are a class of bioactive lipids, which are key modulators of an increasing number of physiologic and pathophysiologic processes that include cell cycle, apoptosis, angiogenesis, stress and inflammatory responses. Sphingomyelin is an important structural component of biological membranes, and one of the end-points in the synthesis of sphingolipids. Mainly synthetized in the Golgi apparatus, sphingomyelin is transported to all other biological membranes. Upon stimulation, sphingomyelin can be hydrolyzed to ceramide by 5 different sphingomyelinases. The diversity and cellular topology of ceramide allow it to exert multiple biologies. Furthermore, ceramide can be metabolized to many other bioactive sphingolipids. Ceramide, coming from sphingomyelin or other complex sphingolipids, can be hydrolyzed to sphingosine, which can easily change cellular localization. In turn, sphingosine can be recycled to ceramide and to sphingomyelin in the endoplasmic reticulum, completing the sphingomyelin cycle. Our understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from studying the enzymes that regulate these sphingolipids, and their manipulation. The use of pharmacologic inhibitors has been critical for their study, as well as being promising bullets for disease treatment. Some of these diseases involving the sphingomyelin cycle include cancer, inflammation, atherosclerosis, diabetes and some rare diseases such as Niemann-Pick disease. This review will focus on the enzymes involved in the sphingomyelin cycle, their history, and their involvement in pathophysiological processes. Finally, it will describe in details all the small molecules that are being used to inhibit these enzymes and their use in therapeutics.


Assuntos
Inibidores Enzimáticos/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Humanos
14.
J Biol Chem ; 290(42): 25356-73, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26318452

RESUMO

Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.


Assuntos
Apoptose , Ceramidas/biossíntese , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Oxirredutases/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Caspases/metabolismo , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Fumonisinas/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Oxirredutases/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
15.
FASEB J ; 29(11): 4654-69, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209696

RESUMO

The bioactive sphingolipid sphingosine-1-phosphate (S1P) mediates cellular proliferation, mitogenesis, inflammation, and angiogenesis. These biologies are mediated through S1P binding to specific GPCRs [sphingosine-1-phosphate receptor (S1PR)1-5] and some other less well-characterized intracellular targets. Ezrin-radixin-moesin (ERM) proteins, a family of adaptor molecules linking the cortical actin cytoskeleton to the plasma membrane, are emerging as critical regulators of cancer invasion via regulation of cell morphology and motility. Recently, we identified S1P as an acute ERM activator (via phosphorylation) through its action on S1PR2. In this work, we dissect the mechanism of S1P generation downstream of epidermal growth factor (EGF) leading to ERM phosphorylation and cancer invasion. Using pharmacologic inhibitors, small interfering RNA technologies, and genetic approaches, we demonstrate that sphingosine kinase (SK)2, and not SK1, is essential and sufficient in EGF-mediated ERM phosphorylation in HeLa cells. In fact, knocking down SK2 decreased ERM activation 2.5-fold. Furthermore, we provide evidence that SK2 is necessary to mediate EGF-induced invasion. In addition, overexpressing SK2 causes a 2-fold increase in HeLa cell invasion. Surprisingly, and for the first time, we find that this event, although dependent on S1PR2 activation, does not generate and does not require extracellular S1P secretion, therefore introducing a potential novel model of autocrine/intracrine action of S1P that still involves its GPCRs. These results define new mechanistic insights for EGF-mediated invasion and novel actions of SK2, therefore setting the stage for novel targets in the treatment of growth factor-driven malignancies.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Comunicação Autócrina/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Epidérmico/genética , Células HeLa , Humanos , Lisofosfolipídeos/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosforilação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
16.
Biochim Biophys Acta ; 1850(4): 628-39, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25484313

RESUMO

BACKGROUND: A novel murine mitochondria-associated neutral sphingomyelinase (MA-nSMase) has been recently cloned and partially characterized. The subcellular localization of the enzyme was found to be predominant in mitochondria. In this work, the determinants of mitochondrial localization and its topology were investigated. METHODS: MA-nSMase mutants lacking consecutive regions and fusion proteins of GFP with truncated MA-nSMase regions were constructed and expressed in MCF-7 cells. Its localization was analyzed using confocal microscopy and sub-cellular fractionation methods. The sub-mitochondrial localization of MA-nSMase was determined using protease protection assay on isolated mitochondria. RESULTS: The results initially showed that a putative mitochondrial localization signal (MLS), homologous to an MLS in the zebra-fish mitochondrial SMase is not necessary for the mitochondrial localization of the murine MA-nSMase. Evidence is provided to the presence of two regions in MA-nSMase that are sufficient for mitochondrial localization: a signal sequence (amino acids 24-56) that is responsible for the mitochondrial localization and an additional 'signal-anchor' sequence (amino acids 77-99) that anchors the protein to the mitochondrial membrane. This protein is topologically located in the outer mitochondrial membrane where both the C and N-termini remain exposed to the cytosol. CONCLUSIONS: MA-nSMase is a membrane anchored protein with a MLS and a signal-anchor sequence at its N-terminal to localize it to the outer mitochondrial membrane. GENERAL SIGNIFICANCE: Mitochondrial sphingolipids have been reported to play a critical role in cellular viability. This study opens a new window to investigate their cellular functions, and to define novel therapeutic targets.


Assuntos
Mitocôndrias/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Membranas Mitocondriais/enzimologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Esfingomielina Fosfodiesterase/química
17.
Anal Chem ; 86(16): 8303-11, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25072097

RESUMO

A novel MALDI-FTICR imaging mass spectrometry (MALDI-IMS) workflow is described for on-tissue detection, spatial localization, and structural confirmation of low abundance bioactive ceramides and other sphingolipids. Increasingly, altered or elevated levels of sphingolipids, sphingolipid metabolites, and sphingolipid metabolizing enzymes have been associated with a variety of disorders such as diabetes, obesity, lysosomal storage disorders, and cancer. Ceramide, which serves as a metabolic hub in sphingolipid metabolism, has been linked to cancer signaling pathways and to metabolic regulation with involvement in autophagy, cell-cycle arrest, senescence, and apoptosis. Using kidney tissues from a new Farber disease mouse model in which ceramides of all acyl chain lengths and other sphingolipid metabolites accumulate in tissues, specific ceramides and sphingomyelins were identified by on-tissue isolation and fragmentation, coupled with an on-tissue digestion by ceramidase or sphingomyelinase. Multiple glycosphingolipid species were also detected. The newly generated library of sphingolipid ions was then applied to MALDI-IMS of human lung cancer tissues. Multiple tumor specific ceramide and sphingomyelin species were detected and confirmed by on-tissue enzyme digests and structural confirmation. High-resolution MALDI-IMS in combination with novel on-tissue ceramidase and sphingomyelinase enzyme digestions makes it now possible to rapidly visualize the distribution of bioactive ceramides and sphingomyelin in tissues.


Assuntos
Ceramidas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esfingolipídeos/análise , Animais , Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Pulmão/patologia , Neoplasias Pulmonares/química , Neoplasias Pulmonares/patologia , Camundongos , Fluxo de Trabalho
18.
Int Immunopharmacol ; 20(2): 359-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713544

RESUMO

Molecules that appear on the surface of tumor cells after their therapy treatment may have important roles either as damage-associated molecular patterns (DAMPs) or signals for phagocytes influencing the disposal of these cells. Treatment of SCCVII and CAL27 cells, models of mouse and human squamous cell carcinoma respectively, by photodynamic therapy (PDT) resulted in the presentation of ceramide and sphingosine-1-phosphate (S1P) on the cell surface. This was documented by anti-ceramide and anti-S1P antibody staining followed by flow cytometry. The exposure of these key sphingolipid molecules on PDT-treated tumor cells was PDT dose-dependent and it varied in intensity with different photosensitizers used for PDT. The above results, together with the finding that both ceramide and S1P can activate NFκB signaling in macrophages co-incubated with PDT-treated tumor cells, establish that these two sphingolipids can act as DAMPs stimulating inflammatory/immune reactions critical for tumor therapy response.


Assuntos
Carcinoma de Células Escamosas/terapia , Membrana Celular/metabolismo , Ceramidas/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Lisofosfolipídeos/metabolismo , Fotoquimioterapia , Receptores de Reconhecimento de Padrão/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C3H , Esfingosina/metabolismo
19.
J Biol Chem ; 288(38): 27667-27679, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23935096

RESUMO

Sphingosine kinase 1 (SK1) produces the pro-survival sphingolipid sphingosine 1-phosphate and has been implicated in inflammation, proliferation, and angiogenesis. Recent studies identified TRAF2 as a sphingosine 1-phosphate target, implicating SK1 in activation of the NF-κB pathway, but the functional consequences of this connection on gene expression are unknown. Here, we find that loss of SK1 potentiates induction of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted; also known as CCL5) in HeLa cells stimulated with TNF-α despite RANTES induction being highly dependent on the NF-κB pathway. Additionally, we find that SK1 is not required for TNF-induced IKK phosphorylation, IκB degradation, nuclear translocation of NF-κB subunits, and transcriptional NF-κB activity. In contrast, loss of SK1 prevented TNF-induced phosphorylation of p38 MAPK, and inhibition of p38 MAPK, like SK1 knockdown, also potentiates RANTES induction. Finally, in addition to RANTES, loss of SK1 also potentiated the induction of multiple chemokines and cytokines in the TNF response. Taken together, these data identify a potential and novel anti-inflammatory function of SK1 in which chemokine levels are suppressed through SK1-mediated activation of p38 MAPK. Furthermore, in this system, activation of NF-κB is dissociated from SK1, suggesting that the interaction between these pathways may be more complex than currently thought.


Assuntos
Quimiocina CCL5/biossíntese , NF-kappa B/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Quimiocina CCL5/genética , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
FEBS J ; 280(24): 6354-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23879641

RESUMO

Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in cell proliferation, angiogenesis, inflammation and malignant transformation among other functions. S1P acts either directly on intracellular targets or activates G protein-coupled receptors, specifically five S1P receptors (S1PRs). The identified S1PRs differ in cellular and tissue distribution, and each is coupled to specific G proteins, which mediate unique functions. Here, we describe functional characteristics of all five receptors, emphasizing S1PR2, which is critical in the immune, nervous, metabolic, cardiovascular, musculoskeletal, and renal systems. This review also describes the role of this receptor in tumor growth and metastasis and suggests potential therapeutic avenues that exploit S1PR2.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/patologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Humanos , Neoplasias/metabolismo , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA