RESUMO
Exposure to pesticide residues during the first 1000 days of life can disrupt body homeostasis and contribute to chronic metabolic diseases. Perinatal chlorpyrifos (CPF) exposure alters gut microbiota (GM) balance, potentially affecting offspring's health. Given the GM influence on brain function, the primary aim is to determine if pesticide-induced dysbiosis (microbial imbalance) affects indirectly other organs, such as the blood-brain barrier (BBB). The secondary objective is to evaluate the prebiotics protective effects, particularly inulin in promoting microbial balance (symbiosis), in both mothers and offspring. A total of 15 or more female rats were divided in 4 groups: control, oral CPF-exposed (1 mg/kg/day), exposed to inulin (10 g/L), and co-exposed to CPF and inulin from pre-gestation until weaning of pups. Samples from intestines, spleen, liver, and brain microvessels underwent microbiological and biomolecular analyses. Bacterial culture assessed GM composition of living bacteria and their translocation to non-intestinal organs. RT qPCR and Western blotting detected gene expression and protein levels of tight junction markers in brain microvessels. CPF exposure caused gut dysbiosis in offspring, with decreased Lactobacillus and Bifidobacterium and increased Escherichia coli (p < 0.01) leading to bacterial translocation to the spleen and liver. CPF also decreased tight junction's gene expression levels (50 to 60% decrease of CLDN3, p < 0.05). In contrast, inulin partially mitigated these adverse effects and restored gene expression to control levels. Our findings demonstrate a causal link between GM alterations and BBB integrity disruptions. The protective effects of inulin suggest potential therapeutic strategies to counteract pesticide-induced dysbiosis.
Assuntos
Barreira Hematoencefálica , Microbioma Gastrointestinal , Exposição Materna , Praguicidas , Prebióticos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Feminino , Barreira Hematoencefálica/efeitos dos fármacos , Ratos , Praguicidas/toxicidade , Gravidez , Disbiose/induzido quimicamente , Clorpirifos/toxicidade , Inulina/farmacologiaRESUMO
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer's disease (AD) by contributing to amyloid-ß (Aß) peptide accumulation. Here, we investigated whether TNF-α and IL-1ß modulate the permeability of the BBB and alter Aß peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1ß differentially induced changes in BLECs' permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1ß act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aß peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aß peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Proteínas de Neoplasias/metabolismo , PermeabilidadeRESUMO
One of the prime features of Alzheimer's disease (AD) is the excessive accumulation of amyloid-ß (Aß) peptides in the brain. Several recent studies suggest that this phenomenon results from the dysregulation of cholesterol homeostasis in the brain and impaired bidirectional Aß exchange between blood and brain. These mechanisms appear to be closely related and are controlled by the blood-brain barrier (BBB) at the brain microvessel level. In animal models of AD, the anticancer drug bexarotene (a retinoid X receptor agonist) has been found to restore cognitive functions and decrease the brain amyloid burden by regulating cholesterol homeostasis. However, the drug's therapeutic effect is subject to debate and the exact mechanism of action has not been characterized. Therefore, the objective of this present study was to determine bexarotene's effects on the BBB. Using an in vitro model of the human BBB, we investigated the drug's effects on cholesterol exchange between abluminal and luminal compartments and the apical-to-basolateral transport of Aß peptides across the BBB. Our results demonstrated that bexarotene induces the expression of ABCA1 but not ApoE. This upregulation correlates with an increase in ApoE2-, ApoE4-, ApoA-I-, and HDL-mediated cholesterol efflux. Regarding the transport of Aß peptides, bexarotene increases the expression of ABCB1, which in turn decreases Aß apical-to-basolateral transport. Our results showed that bexarotene not only promotes the cholesterol exchange between the brain and the blood but also decreases the influx of Aß peptides across BBB, suggesting that bexarotene is a promising drug candidate for the treatment of AD.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Colesterol/metabolismo , Fármacos Neuroprotetores/farmacologia , Tetra-Hidronaftalenos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Anticarcinógenos/farmacologia , Apolipoproteínas E/metabolismo , Bexaroteno , Transporte Biológico/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Bovinos , Técnicas de Cocultura , Sangue Fetal , Humanos , Pericitos , Células-Tronco , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismoRESUMO
Several studies have highlighted the close relationship between Alzheimer's disease (AD) and alterations in the bidirectional transport of amyloid-ß (Aß) peptides across the blood-brain barrier (BBB). The brain capillary endothelial cells (BCECs) that compose the BBB express the receptors and transporters that enable this transport process. There is significant in vivo evidence to suggest that P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) restrict Aß peptides entry into the brain, whereas the receptor for advanced glycation end-products (RAGE) seems to mediate apical-to-basolateral passage across the BBB. However, deciphering the molecular mechanisms underlying these in vivo processes requires further in vitro characterization. Using an in vitro BBB model and specific competition experiments against RAGE, we have observed a significant decrease in apical-to-basolateral (but not basolateral-to-apical) transport of Aß1-40 and Aß1-42 peptides through BCECs. This transport is a caveolae-dependent process and fits with the apical location of RAGE observed in confocal microscopy experiments. Inhibition of P-gp and BCRP using different inhibitors increases transport of Aß peptides suggesting that these efflux pumps are involved in Aß peptide transport at the BCECs level. Taken as a whole, these results demonstrate the involvement of the caveolae-dependent transcytosis of Aß peptides through the BBB in a RAGE-mediated transport process, reinforcing the hypothesis whereby this receptor is a potential drug target in AD.