Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806435

RESUMO

Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts' integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice's hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by "rejuvenating" the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados , Envelhecimento/metabolismo , Animais , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Feminino , Hipocampo/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Doenças Neuroinflamatórias
2.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069498

RESUMO

Tamoxifen is the most widely used selective modulator of estrogen receptors (SERM) and the first strategy as coadjuvant therapy for the treatment of estrogen-receptor (ER) positive breast cancer worldwide. In spite of such success, tamoxifen is not devoid of undesirable effects, the most life-threatening reported so far affecting uterine tissues. Indeed, tamoxifen treatment is discouraged in women under risk of uterine cancers. Recent molecular design efforts have endeavoured the development of tamoxifen derivatives with antiestrogen properties but lacking agonistic uterine tropism. One of this is FLTX2, formed by the covalent binding of tamoxifen as ER binding core, 7-nitrobenzofurazan (NBD) as the florescent dye, and Rose Bengal (RB) as source for reactive oxygen species. Our analyses demonstrate (1) FLTX2 is endowed with similar antiestrogen potency as tamoxifen and its predecessor FLTX1, (2) shows a strong absorption in the blue spectral range, associated to the NBD moiety, which efficiently transfers the excitation energy to RB through intramolecular FRET mechanism, (3) generates superoxide anions in a concentration- and irradiation time-dependent process, and (4) Induces concentration- and time-dependent MCF7 apoptotic cell death. These properties make FLTX2 a very promising candidate to lead a novel generation of SERMs with the endogenous capacity to promote breast tumour cell death in situ by photosensitization.


Assuntos
Antagonistas de Estrogênios/química , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/metabolismo , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Simulação de Dinâmica Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Útero/metabolismo
3.
Front Biosci (Schol Ed) ; 9(1): 111-126, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814578

RESUMO

The increase in the incidence of Alzheimer's disease (AD) in old women may be attributable to estrogen deficiency, and estrogen replacement therapy may be useful in preventing or delaying the onset of this disease. In neuronal membranes, 17 beta-estradiol interacts with estrogen receptors (mERs) located in lipid raft signalosomes which trigger neuroprotective responses by anchoring to scaffolding caveolin-1 complexed with other proteins. We suggest that mER-signalosome malfunctions in AD and by menopause due to development of aberrations in these microstructures. Here, we report that mER dissociates from a voltage-dependent anion channel (VDAC), and that progressive dephosphorylation of VDAC1 enhances neurotoxicity. mER dissociates from caveolin-1 and other neuroprotective proteins, including insulin-like growth factor 1 receptor beta. Similar signalosome disarrangements are observed in AD patients. Moreover, in AD, lipid rafts exhibit alterations in lipid composition, and these changes cause an increase in liquid-ordered as compared to controls. Together, the data show that AD and menopause lead to disruption in the lipid raft structure, and disfunctioning of ER alpha and other neuroprotectors integrated into these signalosomes.


Assuntos
Doença de Alzheimer/metabolismo , Receptor alfa de Estrogênio/metabolismo , Microdomínios da Membrana/metabolismo , Menopausa/metabolismo , Idoso , Caveolina 1 , Feminino , Lobo Frontal/metabolismo , Humanos , Pessoa de Meia-Idade , Fosforilação , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
PLoS One ; 7(7): e42279, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860105

RESUMO

Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms) would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP), giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM) experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC), 600 (C. albicans -5-FC) or 1000 (S. cerevisiae--CSP) fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Mutagênese , Saccharomyces cerevisiae/efeitos dos fármacos , Sequência de Bases , Candida albicans/genética , Ciclo Celular , DNA Fúngico , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA