Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 41(10): 2195-2204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132159

RESUMO

Tendinopathy is one of the most common musculoskeletal disorders with significant repercussions on quality of life and sport activities. Physical exercise (PE) is considered the first-line approach to treat tendinopathy due renowned mechanobiological effects on tenocytes. Irisin, a recently identified myokine released during PE, has been recognized for several beneficial effects towards muscle, cartilage, bone, and intervertebral disc tissues. The aim of this study was to evaluate the effects of irisin on human primary tenocytes (hTCs) in vitro. Human tendons were harvested from specimens of patients undergoing anterior cruciate ligament reconstruction (n = 4). After isolation and expansion, hTCs were treated with RPMI medium (negative control), interleukin (IL)-1ß or tumor necrosis factor-α (TNF-α) (positive controls; 10 ng/mL), irisin (5, 10, 25 ng/mL), IL-1ß or TNF-α pretreatment and subsequent co-treatment with irisin, pretreatment with irisin and subsequent co-treatment with IL-1ß or TNF-α. hTC metabolic activity, proliferation, and nitrite production were evaluated. Detection of unphosphorylated and phosphorylated p38 and ERK was performed. Tissue samples were analyzed by histology and immunohistochemistry to evaluate irisin αVß5 receptor expression. Irisin significantly increased hTC proliferation and metabolic activity, while reducing the production of nitrites both before and after the addition of IL-1ß and TNF-α. Interestingly, irisin reduced p-p38 and pERK levels in inflamed hTCs. The αVß5 receptor was uniformly expressed on hTC plasma membranes, supporting the potential binding of irisin. This is the first study reporting the capacity of irisin to target hTCs and modulating their response to inflammatory stresses, possibly orchestrating a biological crosstalk between the muscle and tendon.


Assuntos
Fibronectinas , Tendinopatia , Humanos , Fibronectinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tenócitos/metabolismo , Qualidade de Vida , Tendões/patologia , Inflamação/metabolismo , Tendinopatia/metabolismo , Músculos/patologia
2.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190046

RESUMO

Oxidative stress, a key mediator of cardiovascular disease, metabolic alterations, and cancer, is independently associated with menopause and obesity. Yet, among postmenopausal women, the correlation between obesity and oxidative stress is poorly examined. Thus, in this study, we compared oxidative stress states in postmenopausal women with or without obesity. Body composition was assessed via DXA, while lipid peroxidation and total hydroperoxides were measured in patient's serum samples via thiobarbituric-acid-reactive substances (TBARS) and derivate-reactive oxygen metabolites (d-ROMs) assays, respectively. Accordingly, 31 postmenopausal women were enrolled: 12 with obesity and 19 of normal weight (mean (SD) age 71.0 (5.7) years). Doubled levels of serum markers of oxidative stress were observed in women with obesity in women with obesity compared to those of normal weight (H2O2: 32.35 (7.3) vs. 18.80 (3.4) mg H2O2/dL; malondialdehyde (MDA): 429.6 (138.1) vs. 155.9 (82.4) mM in women with or without obesity, respectively; p < 0.0001 for both). Correlation analysis showed that both markers of oxidative stress increased with an increasing body mass index (BMI), visceral fat mass, and trunk fat percentage, but not with fasting glucose levels. In conclusion, obesity and visceral fat are associated with a greater increase in oxidative stress in postmenopausal women, possibly increasing cardiometabolic and cancer risks.


Assuntos
Peróxido de Hidrogênio , Pós-Menopausa , Humanos , Feminino , Idoso , Obesidade/metabolismo , Estresse Oxidativo , Índice de Massa Corporal
3.
J Clin Med ; 10(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34575314

RESUMO

The impact of obesity on clinical outcomes following joint replacement procedures is resounding. Therefore, multiple strategies to achieve a substantial weight loss before surgery are needed in obese patients. The aim of the study was to test the effect of a fiber-enriched high carbohydrate (FEHC) diet on the reduction in body weight and pain in elderly obese patients undergoing total hip arthroplasty (THA). Sixty-one candidates for THA were included in our study. Prior to the procedure, the participants have been randomly assigned to a 3-month diet intervention (FEHC diet or free diet). Anthropometric measures and food questionnaires were collected at the enrollment and after 3 months. The Oxford Hip Score (OHS), the Hip disability and Osteoarthritis Outcome Score (HOOS) and the Western Ontario McMaster Universities OA Index (WOMAC) were administered at baseline and before surgery. A statistically significant variation of weight was found in the FEHC diet group (-3.7 kg, -4.4--2.5) compared to the control group (-0.2 kg; -1.4-1.7; p < 0.0001), as well as significant improvements in the OHS (p < 0.0001), the HOOS (p < 0.0001) and the WOMAC (p < 0.0001) questionnaires. According to the results of the study, the FEHC diet in obese patients undergoing THA might help weight loss and improve related anthropometric parameters as well as hip function and pain.

4.
Diabetes Metab Res Rev ; 37(6): e3417, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33156563

RESUMO

Tendinopathy is a chronic and often painful condition affecting both professional athletes and sedentary subjects. It is a multi-etiological disorder caused by the interplay among overload, ageing, smoking, obesity (OB) and type 2 diabetes (T2D). Several studies have identified a strong association between tendinopathy and T2D, with increased risk of tendon pain, rupture and worse outcomes after tendon repair in patients with T2D. Moreover, consequent immobilization due to tendon disorder has a strong impact on diabetes management by reducing physical activity and worsening the quality of life. Multiple investigations have been performed to analyse the causal role of the individual metabolic factors occurring in T2D on the development of tendinopathy. Chronic hyperglycaemia, advanced glycation end-products, OB and insulin resistance have been shown to contribute to the development of diabetic tendinopathy. This review aims to explore the relationship between tendinopathy and T2D, in order to define the contribution of metabolic factors involved in the degenerative process and to discuss possible strategies for the clinical management of diabetic tendinopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Tendinopatia , Diabetes Mellitus Tipo 2/complicações , Humanos , Obesidade , Qualidade de Vida , Tendinopatia/etiologia
5.
J Bone Miner Res ; 35(12): 2415-2422, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777114

RESUMO

Increased circulating sclerostin and accumulation of advanced glycation end-products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk in type 2 diabetes (T2D). Whether the expression of the sclerostin-encoding SOST gene is altered in T2D, and whether it is associated with AGEs accumulation or regulation of other bone formation-related genes is unknown. We hypothesized that AGEs accumulate and SOST gene expression is upregulated in bones from subjects with T2D, leading to downregulation of bone forming genes (RUNX2 and osteocalcin) and impaired bone microarchitecture and strength. We obtained bone tissue from femoral heads of 19 T2D postmenopausal women (mean glycated hemoglobin [HbA1c] 6.5%) and 73 age- and BMI-comparable nondiabetic women undergoing hip replacement surgery. Despite similar bone mineral density (BMD) and biomechanical properties, we found a significantly higher SOST (p = .006) and a parallel lower RUNX2 (p = .025) expression in T2D compared with non-diabetic subjects. Osteocalcin gene expression did not differ between T2D and non-diabetic subjects, as well as circulating osteocalcin and sclerostin levels. We found a 1.5-fold increase in total bone AGEs content in T2D compared with non-diabetic women (364.8 ± 78.2 versus 209.9 ± 34.4 µg quinine/g collagen, respectively; p < .001). AGEs bone content correlated with worse bone microarchitecture, including lower volumetric BMD (r = -0.633; p = .02), BV/TV (r = -0.59; p = .033) and increased trabecular separation/spacing (r = 0.624; p = .023). In conclusion, our data show that even in patients with good glycemic control, T2D affects the expression of genes controlling bone formation (SOST and RUNX2). We also found that accumulation of AGEs is associated with impaired bone microarchitecture. We provide novel insights that may help understand the mechanisms underlying bone fragility in T2D. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Idoso , Densidade Óssea , Osso e Ossos , Feminino , Hemoglobinas Glicadas , Humanos
6.
Diabetes Metab Res Rev ; 36(1): e3224, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646738

RESUMO

Obesity (OB) and type 2 diabetes (T2D) are among the most prevalent metabolic diseases. They currently affect a substantial part of the world population and are characterized by several systemic co-morbidities, including cardiovascular diseases, stroke, cancer, liver steatosis, and musculoskeletal disorders, by increasing the risk of developing osteoarthritis and intervertebral disc degeneration (IVDD). IVDD is a chronic, progressive process whose main features are disc dehydration, loss of disc height, and changes of load distribution across the spine, resulting in disc structure disruption and leading to low back pain onset. Given the high prevalence of these metabolic disorders and their association with IVDD, several studies have been conducted in order to investigate the causative role of biological and biomechanical characteristics proper to these conditions in the development of IVDD. This review aims to analyse the role of OB and T2D on IVDD, in order to clarify the pathophysiological drivers of the degenerative process and to delineate possible targets to which appropriate treatments may be addressed in the near future.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Degeneração do Disco Intervertebral/etiologia , Obesidade/fisiopatologia , Humanos , Degeneração do Disco Intervertebral/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA