Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1360397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638908

RESUMO

Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.

2.
J Immunol Methods ; 494: 113051, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794223

RESUMO

The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Proteínas com Domínio LIM/metabolismo , Leucemia de Células T/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/metabolismo , Anticorpos/metabolismo , Ligação Competitiva , Células Cultivadas , Descoberta de Drogas , Humanos , Fragmentos de Imunoglobulinas/genética , Espaço Intracelular , Conformação Proteica , Bibliotecas de Moléculas Pequenas , Ressonância de Plasmônio de Superfície , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Linfócitos T/imunologia
3.
Proc Natl Acad Sci U S A ; 116(7): 2545-2550, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683716

RESUMO

The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein-protein interactions. We have refined crystallization conditions for KRAS169Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein-protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein-protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein-protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Cristalografia por Raios X , Desenvolvimento de Medicamentos , Estrutura Molecular , Proteína Oncogênica p21(ras)/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
4.
Hum Gene Ther ; 29(3): 312-326, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28922945

RESUMO

Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and ß subunits separately (TSD α + ß) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + ß sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + ß), and ganglioside clearance was most widespread in the TSD α + ß high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.


Assuntos
Dependovirus , Terapia Genética , Doença de Tay-Sachs/terapia , Cadeia alfa da beta-Hexosaminidase/biossíntese , Cadeia beta da beta-Hexosaminidase/biossíntese , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Modelos Animais de Doenças , Ecocardiografia , Humanos , Imageamento por Ressonância Magnética , Microglia/enzimologia , Ovinos , Doença de Tay-Sachs/diagnóstico por imagem , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
5.
Arch Biochem Biophys ; 617: 84-93, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497696

RESUMO

The Kelch-like ECH associated protein 1 (Keap1) is a component of a Cullin3-based Cullin-RING E3 ubiquitin ligase (CRL) multisubunit protein complex. Within the CRL, homodimeric Keap1 functions as the Cullin3 adaptor, and importantly, it is also the critical component of the E3 ligase that performs the substrate recognition. The best-characterized substrate of Keap1 is transcription factor NF-E2 p45-related factor 2 (Nrf2), which orchestrates an elaborate transcriptional program in response to environmental challenges caused by oxidants, electrophiles and pro-inflammatory agents, allowing adaptation and survival under stress conditions. Keap1 is equipped with reactive cysteine residues that act as sensors for endogenously produced and exogenously encountered small molecules (termed inducers), which have a characteristic chemical signature, reactivity with sulfhydryl groups. Inducers modify the cysteine sensors of Keap1 and impair its ability to target Nrf2 for ubiquitination and degradation. Consequently, Nrf2 accumulates, enters the nucleus and drives the transcription of its target genes, which encode a large network of cytoprotective proteins. Here we summarize the early studies leading to the prediction of the existence of Keap1, followed by the discovery of Keap1 as the main negative regulator of Nrf2. We then describe the available structural information on Keap1, its assembly with Cullin3, and its interaction with Nrf2. We also discuss the multiple cysteine sensors of Keap1 that allow for detection of a wide range of endogenous and environmental inducers, and provide fine-tuning and tight control of the Keap1/Nrf2 stress-sensing response.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Núcleo Celular/metabolismo , Proteínas Culina/metabolismo , Cisteína/química , Células HEK293 , Homeostase , Humanos , Inflamação , Modelos Moleculares , Oxidantes/química , Oxigênio/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Ubiquitina-Proteína Ligases/metabolismo
6.
Chem Biol ; 22(9): 1174-84, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26320862

RESUMO

RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers.


Assuntos
Proteína Adaptadora de Sinalização NOD1/antagonistas & inibidores , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Imidazóis/química , Imidazóis/farmacologia , Inflamação/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Piridazinas/química , Piridazinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
7.
Free Radic Biol Med ; 88(Pt B): 101-107, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26057936

RESUMO

Keap1 is a highly redox-sensitive member of the BTB-Kelch family that assembles with the Cul3 protein to form a Cullin-RING E3 ligase complex for the degradation of Nrf2. Oxidative stress disables Keap1, allowing Nrf2 protein levels to accumulate for the transactivation of critical stress response genes. Consequently, the Keap1-Nrf2 system is extensively pursued for the development of protein-protein interaction inhibitors that will stabilize Nrf2 for therapeutic effect in conditions of neurodegeneration, inflammation, and cancer. Here we review current progress toward the structure determination of Keap1 and its protein complexes with Cul3, Nrf2 substrate, and small-molecule antagonists. Together the available structures establish a rational three-dimensional model to explain the two-site binding of Nrf2 as well as its efficient ubiquitination.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Fator 2 Relacionado a NF-E2/química , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
8.
J Med Chem ; 57(19): 7900-15, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25101911

RESUMO

There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure-activity relationship for a series of novel ALK2 inhibitors based on the 2-aminopyridine compound K02288. Several modifications increased potency in kinase, thermal shift, or cell-based assays of BMP signaling and transcription, as well as selectivity for ALK2 versus closely related BMP and TGF-ß type I receptor kinases. Compounds in this series exhibited a wide range of in vitro cytotoxicity that was not correlated with potency or selectivity, suggesting mechanisms independent of BMP or TGF-ß inhibition. The study also highlights a potent 2-methylpyridine derivative 10 (LDN-214117) with a high degree of selectivity for ALK2 and low cytotoxicity that could provide a template for preclinical development. Contrary to the notion that activating mutations of ALK2 might alter inhibitor efficacy due to potential conformational changes in the ATP-binding site, the compounds demonstrated consistent binding to a panel of mutant and wild-type ALK2 proteins. Thus, BMP inhibitors identified via activity against wild-type ALK2 signaling are likely to be of clinical relevance for the diverse ALK2 mutant proteins associated with FOP and DIPG.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Aminopiridinas/farmacologia , Mutação , Miosite Ossificante/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores de Ativinas Tipo I/genética , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Humanos , Miosite Ossificante/genética , Fenóis/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
9.
J Mol Biol ; 426(13): 2457-70, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24768818

RESUMO

The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a ß-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores de Colágeno/antagonistas & inibidores , Receptores Mitogênicos/antagonistas & inibidores , Sequência de Aminoácidos , Benzamidas/farmacologia , Sítios de Ligação , Receptor com Domínio Discoidina 1 , Receptores com Domínio Discoidina , Humanos , Mesilato de Imatinib , Imidazóis/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Piridazinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores de Colágeno/química , Receptores de Colágeno/genética , Receptores Mitogênicos/química , Receptores Mitogênicos/genética , Homologia de Sequência de Aminoácidos
10.
ACS Chem Biol ; 8(10): 2145-50, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23899692

RESUMO

The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the 'DFG-out' conformation and inhibits DDR1 autophosphorylation in cells at submicromolar concentrations with good selectivity as assessed against a panel of 451 kinases measured using the KinomeScan technology. We identified a mutation in the hinge region of DDR1, G707A, that confers >20-fold resistance to the ability of DDR1-IN-1 to inhibit DDR1 autophosphorylation and can be used to establish what pharmacology is DDR1-dependent. A combinatorial screen of DDR1-IN-1 with a library of annotated kinase inhibitors revealed that inhibitors of PI3K and mTOR such as GSK2126458 potentiate the antiproliferative activity of DDR1-IN-1 in colorectal cancer cell lines. DDR1-IN-1 provides a useful pharmacological probe for DDR1-dependent signal transduction.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Receptor com Domínio Discoidina 1 , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Inibidores de Proteínas Quinases/química
11.
J Mol Biol ; 423(4): 515-27, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22917970

RESUMO

Tumor suppressors p53, p63 and p73 comprise a family of stress-responsive transcription factors with distinct functions in development and tumor suppression. Most human cancers lose p53 function, yet all three proteins are capable of inducing apoptosis or cellular senescence. Mechanisms are therefore under investigation to activate p73-dependent apoptosis in p53-deficient cancer cells. Significantly, the DNA-binding domain (DBD) of p73 escapes viral oncoproteins and displays an enhanced thermal stability. To further understand the variant features of p73, we solved the high-resolution crystal structure of the p73 DBD as well as its complex with the ankyrin repeat and SH3 domains of the pro-apoptotic factor ASPP2. The p73 structure exhibits the same conserved architecture as p53 but displays a divergent L2 loop, a known site of protein-protein interaction. The loop in p73 is changed by a two-residue insertion that also induces repacking around the site of the p53 mutational hotspot R175. Importantly, the binding of ASPP2 is preserved by conformational changes in both the ankyrin repeat and SH3 domains. These results further highlight the structural variation that impacts p53 family interactions within the p53 interactome.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Repetição de Anquirina , Apoptose , Linhagem Celular Tumoral , Cristalografia por Raios X , Genes Supressores de Tumor , Humanos , Estrutura Terciária de Proteína , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/deficiência , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA