Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276372

RESUMO

Cultivar Williams 82 has served as the reference genome for the soybean research community since 2008, but is known to have areas of genomic heterogeneity among different sub-lines. This work provides an updated assembly (version Wm82.a6) derived from a specific sub-line known as Wm82-ISU-01 (seeds available under USDA accession PI 704477). The genome was assembled using Pacific BioSciences HiFi reads and integrated into chromosomes using HiC. The 20 soybean chromosomes assembled into a genome of 1.01Gb, consisting of 36 contigs. The genome annotation identified 48 387 gene models, named in accordance with previous assembly versions Wm82.a2 and Wm82.a4. Comparisons of Wm82.a6 with other near-gapless assemblies of Williams 82 reveal large regions of genomic heterogeneity, including regions of differential introgression from the cultivar Kingwa within approximately 30 Mb and 25 Mb segments on chromosomes 03 and 07, respectively. Additionally, our analysis revealed a previously unknown large (>20 Mb) heterogeneous region in the pericentromeric region of chromosome 12, where Wm82.a6 matches the 'Williams' haplotype while the other two near-gapless assemblies do not match the haplotype of either parent of Williams 82. In addition to the Wm82.a6 assembly, we also assembled the genome of 'Fiskeby III,' a rich resource for abiotic stress resistance genes. A genome comparison of Wm82.a6 with Fiskeby III revealed the nucleotide and structural polymorphisms between the two genomes within a QTL region for iron deficiency chlorosis resistance. The Wm82.a6 and Fiskeby III genomes described here will enhance comparative and functional genomics capacities and applications in the soybean community.

2.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367243

RESUMO

MOTIVATION: Genotyping by sequencing is a powerful tool for investigating genetic variation in plants, but many economically important plants are allopolyploids, where homoeologous similarity obscures the subgenomic origin of reads and confounds allelic and homoeologous SNPs. Recent polyploid genotyping methods use allelic frequencies, rate of heterozygosity, parental cross or other information to resolve read assignment, but good subgenomic references offer the most direct information. The typical strategy aligns reads to the joint reference, performs diploid genotyping within each subgenome, and filters the results, but persistent read misassignment results in an excess of false heterozygous calls. RESULTS: We introduce the Comprehensive Allopolyploid Genotyper (CAPG), which formulates an explicit likelihood to weight read alignments against both subgenomic references and genotype individual allopolyploids from whole-genome resequencing data. We demonstrate CAPG in allotetraploids, where it performs better than Genome Analysis Toolkit's HaplotypeCaller applied to reads aligned to the combined subgenomic references. AVAILABILITY AND IMPLEMENTATION: Code and tutorials are available at https://github.com/Kkulkarni1/CAPG.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Técnicas de Genotipagem , Software , Genótipo , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA , Heterozigoto , Alelos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Nat Plants ; 8(3): 233-244, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288665

RESUMO

Polyploidy and life-strategy transitions between annuality and perenniality often occur in flowering plants. However, the evolutionary propensities of polyploids and the genetic bases of such transitions remain elusive. We assembled chromosome-level genomes of representative perennial species across the genus Glycine including five diploids and a young allopolyploid, and constructed a Glycine super-pangenome framework by integrating 26 annual soybean genomes. These perennial diploids exhibit greater genome stability and possess fewer centromere repeats than the annuals. Biased subgenomic fractionation occurred in the allopolyploid, primarily by accumulation of small deletions in gene clusters through illegitimate recombination, which was associated with pre-existing local subgenomic differentiation. Two genes annotated to modulate vegetative-reproductive phase transition and lateral shoot outgrowth were postulated as candidates underlying the perenniality-annuality transition. Our study provides insights into polyploid genome evolution and lays a foundation for unleashing genetic potential from the perennial gene pool for soybean improvement.


Assuntos
Glicina , Poliploidia , Diploide , Filogenia , Glycine max/genética
4.
PLoS One ; 16(7): e0240948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242220

RESUMO

In soybean variety development and genetic improvement projects, iron deficiency chlorosis (IDC) is visually assessed as an ordinal response variable. Linear Mixed Models for Genomic Prediction (GP) have been developed, compared, and used to select continuous plant traits such as yield, height, and maturity, but can be inappropriate for ordinal traits. Generalized Linear Mixed Models have been developed for GP of ordinal response variables. However, neither approach addresses the most important questions for cultivar development and genetic improvement: How frequently are the 'wrong' genotypes retained, and how often are the 'correct' genotypes discarded? The research objective reported herein was to compare outcomes from four data modeling and six algorithmic modeling GP methods applied to IDC using decision metrics appropriate for variety development and genetic improvement projects. Appropriate metrics for decision making consist of specificity, sensitivity, precision, decision accuracy, and area under the receiver operating characteristic curve. Data modeling methods for GP included ridge regression, logistic regression, penalized logistic regression, and Bayesian generalized linear regression. Algorithmic modeling methods include Random Forest, Gradient Boosting Machine, Support Vector Machine, K-Nearest Neighbors, Naïve Bayes, and Artificial Neural Network. We found that a Support Vector Machine model provided the most specific decisions of correctly discarding IDC susceptible genotypes, while a Random Forest model resulted in the best decisions of retaining IDC tolerant genotypes, as well as the best outcomes when considering all decision metrics. Overall, the predictions from algorithmic modeling result in better decisions than from data modeling methods applied to soybean IDC.


Assuntos
Algoritmos , Glycine max/metabolismo , Deficiências de Ferro , Modelos Estatísticos , Teorema de Bayes , Análise por Conglomerados , Modelos Logísticos , Aprendizado de Máquina
5.
Evol Bioinform Online ; 16: 1176934320939943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694909

RESUMO

Protein domains can be regarded as sections of protein sequences capable of folding independently and performing specific functions. In addition to amino-acid level changes, protein sequences can also evolve through domain shuffling events such as domain insertion, deletion, or duplication. The evolution of protein domains can be studied by tracking domain changes in a selected set of species with known phylogenetic relationships. Here, we conduct such an analysis by defining domains as "features" or "descriptors," and considering the species (target + outgroup) as instances or data-points in a data matrix. We then look for features (domains) that are significantly different between the target species and the outgroup species. We study the domain changes in 2 large, distinct groups of plant species: legumes (Fabaceae) and grasses (Poaceae), with respect to selected outgroup species. We evaluate 4 types of domain feature matrices: domain content, domain duplication, domain abundance, and domain versatility. The 4 types of domain feature matrices attempt to capture different aspects of domain changes through which the protein sequences may evolve-that is, via gain or loss of domains, increase or decrease in the copy number of domains along the sequences, expansion or contraction of domains, or through changes in the number of adjacent domain partners. All the feature matrices were analyzed using feature selection techniques and statistical tests to select protein domains that have significant different feature values in legumes and grasses. We report the biological functions of the top selected domains from the analysis of all the feature matrices. In addition, we also perform domain-centric gene ontology (dcGO) enrichment analysis on all selected domains from all 4 feature matrices to study the gene ontology terms associated with the significantly evolving domains in legumes and grasses. Domain content analysis revealed a striking loss of protein domains from the Fanconi anemia (FA) pathway, the pathway responsible for the repair of interstrand DNA crosslinks. The abundance analysis of domains found in legumes revealed an increase in glutathione synthase enzyme, an antioxidant required from nitrogen fixation, and a decrease in xanthine oxidizing enzymes, a phenomenon confirmed by previous studies. In grasses, the abundance analysis showed increases in domains related to gene silencing which could be due to polyploidy or due to enhanced response to viral infection. We provide a docker container that can be used to perform this analysis workflow on any user-defined sets of species, available at https://cloud.docker.com/u/akshayayadav/repository/docker/akshayayadav/protein-domain-evolution-project.

7.
Front Plant Sci ; 10: 345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105714

RESUMO

Based on evolutionary, phylogenomic, and synteny analyses of genome sequences for more than a dozen diverse legume species as well as analysis of chromosome counts across the legume family, we conclude that the genus Cercis provides a plausible model for an early evolutionary form of the legume genome. The small Cercis genus is in the earliest-diverging clade in the earliest-diverging legume subfamily (Cercidoideae). The Cercis genome is physically small, and has accumulated mutations at an unusually slow rate compared to other legumes. Chromosome counts across 477 legume genera, combined with phylogenetic reconstructions and histories of whole-genome duplications, suggest that the legume progenitor had 7 chromosomes - as does Cercis. We propose a model in which a legume progenitor, with 7 chromosomes, diversified into species that would become the Cercidoideae and the remaining legume subfamilies; then speciation in the Cercidoideae gave rise to the progenitor of the Cercis genus. There is evidence for a genome duplication in the remaining Cercidoideae, which is likely due to allotetraploidy involving hybridization between a Cercis progenitor and a second diploid species that existed at the time of the polyploidy event. Outside the Cercidoideae, a set of probably independent whole-genome duplications gave rise to the five other legume subfamilies, at least four of which have predominant counts of 12-14 chromosomes among their early-diverging taxa. An earlier study concluded that independent duplications occurred in the Caesalpinioideae, Detarioideae, and Papilionoideae. We conclude that Cercis may be unique among legumes in lacking evidence of polyploidy, a process that has shaped the genomes of all other legumes thus far investigated.

8.
Nat Genet ; 51(5): 877-884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043755

RESUMO

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , Tetraploidia
9.
Nat Commun ; 10(1): 1216, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872580

RESUMO

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Assuntos
Genoma de Planta/genética , Glycine max/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Domesticação , Genômica/métodos , Genótipo , Anotação de Sequência Molecular , Peptídeos/genética , Proteínas de Plantas/genética , Translocação Genética/genética
10.
Mol Biol Evol ; 32(1): 193-210, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349287

RESUMO

Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses.


Assuntos
Fabaceae/classificação , Fabaceae/genética , Tetraploidia , Evolução Molecular , Fabaceae/fisiologia , Genoma de Planta , Família Multigênica , Mutação , Fixação de Nitrogênio , Filogenia , Simbiose
11.
BMC Genomics ; 15: 950, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25362847

RESUMO

BACKGROUND: The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS: In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS: We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.


Assuntos
Desidratação/genética , Perfilação da Expressão Gênica , Glycine max/genética , Glycine max/metabolismo , Proteínas de Homeodomínio/genética , Zíper de Leucina/genética , Tolerância ao Sal/genética , Fatores de Transcrição/genética , Sítios de Ligação , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , Sequência Conservada , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/classificação , Anotação de Sequência Molecular , Família Multigênica , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Filogenia , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/classificação
12.
Nat Genet ; 46(7): 707-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908249

RESUMO

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Genoma de Planta , Phaseolus/genética , Locos de Características Quantitativas , América Central , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/genética , Ploidias , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Sementes/química , Sementes/genética , Análise de Sequência de DNA , América do Sul
13.
Breed Sci ; 61(5): 437-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136483

RESUMO

The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58 Mya and >130 Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including http://www.phytozome.net, http://soybase.org, http://comparative-legumes.org, and http://www.legumebase.brc.miyazaki-u.ac.jp. The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods.

14.
Plant Cell ; 24(1): 21-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22227891

RESUMO

The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes.


Assuntos
Genes Duplicados/genética , Glycine max/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Poliploidia
15.
Plant Cell ; 23(9): 3129-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21917551

RESUMO

With the advent of high-throughput sequencing, the availability of genomic sequence for comparative genomics is increasing exponentially. Numerous completed plant genome sequences enable characterization of patterns of the retention and evolution of genes within gene families due to multiple polyploidy events, gene loss and fractionation, and differential evolutionary pressures over time and across different gene families. In this report, we trace the changes that have occurred in 12 surviving homoeologous genomic regions from three rounds of polyploidy that contributed to the current Glycine max genome: a genome triplication before the origin of the rosids (~130 to 240 million years ago), a genome duplication early in the legumes (~58 million years ago), and a duplication in the Glycine lineage (~13 million years ago). Patterns of gene retention following the genome triplication event generally support predictions of the Gene Balance Hypothesis. Finally, we find that genes in networks with a high level of connectivity are more strongly conserved than those with low connectivity and that the enrichment of these highly connected genes in the 12 highly conserved homoeologous segments may in part explain their retention over more than 100 million years and repeated polyploidy events.


Assuntos
Evolução Molecular , Genoma de Planta , Glycine max/genética , Poliploidia , DNA de Plantas/genética , Duplicação Gênica , Família Multigênica , Filogenia , Análise de Sequência de DNA , Sintenia
16.
PLoS One ; 5(7): e11630, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20661290

RESUMO

BACKGROUND: Several lines of evidence indicate that polyploidy occurred by around 54 million years ago, early in the history of legume evolution, but it has not been known whether this event was confined to the papilionoid subfamily (Papilionoideae; e.g. beans, medics, lupins) or occurred earlier. Determining the timing of the polyploidy event is important for understanding whether polyploidy might have contributed to rapid diversification and radiation of the legumes near the origin of the family; and whether polyploidy might have provided genetic material that enabled the evolution of a novel organ, the nitrogen-fixing nodule. Although symbioses with nitrogen-fixing partners have evolved in several lineages in the rosid I clade, nodules are widespread only in legume taxa, being nearly universal in the papilionoids and in the mimosoid subfamily (e.g., mimosas, acacias)--which diverged from the papilionoid legumes around 58 million years ago, soon after the origin of the legumes. METHODOLOGY/PRINCIPAL FINDINGS: Using transcriptome sequence data from Chamaecrista fasciculata, a nodulating member of the mimosoid clade, we tested whether this species underwent polyploidy within the timeframe of legume diversification. Analysis of gene family branching orders and synonymous-site divergence data from C. fasciculata, Glycine max (soybean), Medicago truncatula, and Vitis vinifera (grape; an outgroup to the rosid taxa) establish that the polyploidy event known from soybean and Medicago occurred after the separation of the mimosoid and papilionoid clades, and at or shortly before the Papilionoideae radiation. CONCLUSIONS: The ancestral legume genome was not fundamentally polyploid. Moreover, because there has not been an independent instance of polyploidy in the Chamaecrista lineage there is no necessary connection between polyploidy and nodulation in legumes. Chamaecrista may serve as a useful model in the legumes that lacks a paleopolyploid history, at least relative to the widely studied papilionoid models.


Assuntos
Evolução Molecular , Fabaceae/genética , Fabaceae/classificação , Genoma de Planta/genética , Filogenia , Poliploidia
17.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20075913

RESUMO

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Assuntos
Genoma de Planta/genética , Genômica , Glycine max/genética , Poliploidia , Arabidopsis/genética , Cruzamento , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Nodulação/genética , Locos de Características Quantitativas/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Óleo de Soja/biossíntese , Sintenia/genética , Fatores de Transcrição/genética
18.
Plant Physiol ; 148(4): 1740-59, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842825

RESUMO

The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.


Assuntos
Evolução Molecular , Duplicação Gênica , Genes de Plantas , Glycine max/genética , Poliploidia , Retroelementos , Centrômero/genética , Cromossomos Artificiais Bacterianos , DNA de Plantas/química , Deleção de Genes , Genoma de Planta , Imunidade Inata/genética , Família Multigênica , Mutagênese Insercional , Phaseolus/genética , Filogenia , Doenças das Plantas/genética , Análise de Sequência de DNA
19.
Microbes Infect ; 8(7): 1702-13, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16820314

RESUMO

The evolutionary origins of extraintestinal pathogenic Escherichia coli (ExPEC) remain uncertain despite these organisms' relevance to human disease. A valid understanding of ExPEC phylogeny is needed as a framework against which the observed distribution of virulence factors and clinical associations can be analyzed. Accordingly, phylogenetic relationships were defined by multi-locus sequence analysis among 44 representatives of selected ExPEC clonal groups and the E. coli Reference (ECOR) collection. Recombination, which significantly obscured the phylogenetic signal for several strains, was dealt with by excluding strains or specific sequences. Conflicting overall phylogenies, and internal phylogenies for virulence-associated phylogenetic group B2, were inferred depending on the specific dataset (i.e., how extensively purged of recombination), outgroup (Salmonella enterica and/or Escherichia fergusonii), and analysis method (neighbor joining, maximum parsimony, maximum likelihood, or Bayesian likelihood). Nonetheless, the major E. coli phylogenetic groups A, B1, and B2 were consistently well resolved, as was a major sub-component of group D and an ECOR 37-O157:H7 clade. Moreover, nine important ExPEC clonal groups within groups B2 and D, characterized by serotypes O6:K2:H1, O18:K1:H7, O6:H31, and O4:K+:H+ (from group B2), and O1:K1:H-, O7:K1:H-, O157:K+:H (non-7), O15:K52:H1, and O11/17/77:K52:H18 ("clonal group A") (from group D), were consistently well resolved, regardless of clinical background (cystitis, pyelonephritis, neonatal meningitis, sepsis, or fecal), host group, geographical origin, and virulence profile. Among the group B2-derived clonal groups the O6:K2:H1 clade appeared basal. Within group D, "clonal group A" and the O15:K52:H1 clonal group were consistently placed with ECOR 47 and ECOR 44, respectively, as nearest neighbors. These findings clarify phylogenetic relationships among key ExPEC clonal groups but also emphasize that recombination appears to obscure the oldest evolutionary relationships, despite extensive targeted sequencing and use of a wide range of analysis techniques.


Assuntos
DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/veterinária , Genótipo , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência , Sorotipagem
20.
Plant Physiol ; 135(3): 1179-97, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15266052

RESUMO

The Fabaceae, the third largest family of plants and the source of many crops, has been the target of many genomic studies. Currently, only the grasses surpass the legumes for the number of publicly available expressed sequence tags (ESTs). The quantity of sequences from diverse plants enables the use of computational approaches to identify novel genes in specific taxa. We used BLAST algorithms to compare unigene sets from Medicago truncatula, Lotus japonicus, and soybean (Glycine max and Glycine soja) to nonlegume unigene sets, to GenBank's nonredundant and EST databases, and to the genomic sequences of rice (Oryza sativa) and Arabidopsis. As a working definition, putatively legume-specific genes had no sequence homology, below a specified threshold, to publicly available sequences of nonlegumes. Using this approach, 2,525 legume-specific EST contigs were identified, of which less than three percent had clear homology to previously characterized legume genes. As a first step toward predicting function, related sequences were clustered to build motifs that could be searched against protein databases. Three families of interest were more deeply characterized: F-box related proteins, Pro-rich proteins, and Cys cluster proteins (CCPs). Of particular interest were the >300 CCPs, primarily from nodules or seeds, with predicted similarity to defensins. Motif searching also identified several previously unknown CCP-like open reading frames in Arabidopsis. Evolutionary analyses of the genomic sequences of several CCPs in M. truncatula suggest that this family has evolved by local duplications and divergent selection.


Assuntos
Fabaceae/genética , Genes de Plantas , Proteínas de Plantas/genética , Algoritmos , Sequência de Aminoácidos , Cisteína , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Proteínas de Plantas/química , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA