Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioelectricity ; 6(2): 136-142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39119565

RESUMO

The 32nd Ion Channel Meetings were organized by the Ion Channels Association from September 17 to 20, 2023 in the Occitanie region (Sète). Researchers, post-docs and students from France, Europe and non-European countries came together to present and discuss their work on various themes covering the field of neuroscience, stem cells, hypoxia and pathophysiology cardiac. Through the plenary conference given by Professor Emilio Carbone and the 5 conferences organized by the scientific committee, attention was paid this year to autism, neuromotor and cardiac disorders and tumor aggressive processes. The scientific exchanges were enriched by two general conferences on the biometric analysis of publications related to ion channels and a retrospective presentation of proven cases of scientific fraud. These presentations are summarized in this meeting report.

2.
STAR Protoc ; 3(4): 101691, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36173713

RESUMO

Tumor vessel co-option, a process in which cancer cells "hijack" pre-existing blood vessels to grow and invade healthy tissue, is poorly understood but is a proposed resistance mechanism against anti-angiogenic therapy (AAT). Here, we describe protocols for establishing murine renal (RENCA) and breast (4T1) cancer lung vessel co-option metastases models. Moreover, we outline a reproducible protocol for single-cell isolation from murine lung metastases using magnetic-activated cell sorting as well as immunohistochemical stainings to distinguish vessel co-option from angiogenesis. For complete details on the use and execution of this protocol, please refer to Teuwen et al. (2021).


Assuntos
Neoplasias Pulmonares , Neovascularização Patológica , Camundongos , Animais , Neovascularização Patológica/patologia , Células Endoteliais , Neoplasias Pulmonares/patologia , Modelos Animais de Doenças
3.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35565390

RESUMO

Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.

4.
Rev Physiol Biochem Pharmacol ; 182: 111-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32809072

RESUMO

Calcium (Ca2+)-permeable channels are key players in different processes leading to blood vessel formation via sprouting angiogenesis, including endothelial cell (EC) proliferation and migration, as well as in controlling vascular features which are typical of the tumor vasculature.In this review we present an up-to-date and critical view on the role of Ca2+-permeable channels in tumor vascularization, emphasizing on the dual communication between growth factors (mainly VEGF) and Ca2+ signals. Due to the complexity of the tumor microenvironment (TME) as a source of multiple stimuli acting on the endothelium, we aim to discuss the close interaction between chemical and physical challenges (hypoxia, oxidative stress, mechanical stress) and endothelial Ca2+-permeable channels, focusing on transient receptor potential (TRP), store-operated Ca2+ channels (SOCs), and mechanosensitive Piezo channels. This approach will depict their crucial contribution in regulating key properties of tumor blood vessels, such as recruitment of endothelial progenitors cells (EPCs) in the early steps of tumor vascularization, abnormal EC migration and proliferation, and increased vascular permeability. Graphical abstract depicting the functional role of Ca2+-permeable TRP, SOCs and Piezo channels in the biological processes regulating tumor angiogenesis in presence of both chemical (oxidative stress and oxygen levels) and mechanical stimuli (ECM stiffness). SOCs store-operated Ca2+ channels, TRPA transient receptor potential ankyrin, TRPV transient receptor potential vanilloid, TRPC transient receptor potential canonical, TRPM transient receptor potential melastatin, TRPM transient receptor potential vanilloid, O2 oxygen, ECM extracellular matrix.


Assuntos
Neoplasias , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinais (Psicologia) , Humanos , Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Microambiente Tumoral
5.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133923

RESUMO

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Análise de Célula Única , Animais , Linhagem Celular Tumoral , Células Endoteliais/patologia , Feminino , Neoplasias Renais/patologia , Neoplasias Pulmonares/secundário , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Células Mieloides/patologia , Pericitos/patologia
6.
Front Cell Dev Biol ; 8: 573747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282859

RESUMO

Calcium ion (Ca2+) signaling is critical to many physiological processes, and its kinetics and subcellular localization are tightly regulated in all cell types. All Ca2+ flux perturbations impact cell function and may contribute to various diseases, including cancer. Several modulators of Ca2+ signaling are attractive pharmacological targets due to their accessibility at the plasma membrane. Despite this, the number of specific inhibitors is still limited, and to date there are no anticancer drugs in the clinic that target Ca2+ signaling. Ca2+ dynamics are impacted, in part, by modifications of cellular metabolic pathways. Conversely, it is well established that Ca2+ regulates cellular bioenergetics by allosterically activating key metabolic enzymes and metabolite shuttles or indirectly by modulating signaling cascades. A coordinated interplay between Ca2+ and metabolism is essential in maintaining cellular homeostasis. In this review, we provide a snapshot of the reciprocal interaction between Ca2+ and metabolism and discuss the potential consequences of this interplay in cancer cells. We highlight the contribution of Ca2+ to the metabolic reprogramming observed in cancer. We also describe how the metabolic adaptation of cancer cells influences this crosstalk to regulate protumorigenic signaling pathways. We suggest that the dual targeting of these processes might provide unprecedented opportunities for anticancer strategies. Interestingly, promising evidence for the synergistic effects of antimetabolites and Ca2+-modulating agents is emerging.

7.
Curr Opin Oncol ; 32(1): 44-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609741

RESUMO

PURPOSE OF REVIEW: Recently, the combination of antiangiogenic agents, chemotherapy and immunotherapy has shown synergistic anticancer effects in non-small cell lung cancer (NSCLC). The future for this approach appears bright in lung cancer treatment; however, many challenges remain to be overcome regarding its true potential, optimal sequence and timing of therapy, and safety profile. In this review, we will discuss the current status and future direction of antiangiogenic therapy for the treatment of NSCLC, and highlight emerging strategies, such as tumor vessel normalization (TVN). RECENT FINDINGS: Bevacizumab was the first antiangiogenic agent approved for the treatment of advanced NSCLC. Recently, the combination of chemotherapy/antiangiogenic therapy with immunotherapy showed high efficacy in first-line settings. A subgroup of patients with liver metastasis and driver mutation-addicted tumors benefited most, suggesting that the metastatic location, as well as the genetic background of the tumor, are key determinants for therapy responses. SUMMARY: The efficacy of antiangiogenic therapies in unselected patients is rather limited. The tumor microenvironment has appeared to be more complex and heterogeneous than previously assumed. Only a contextual rather than a cell-specific approach might provide valuable insights towards the clinical validation of combinational therapies.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Ensaios Clínicos Fase III como Assunto , Terapia Combinada , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Neovascularização Patológica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146486

RESUMO

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Assuntos
Ácido Graxo Sintase Tipo I/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Malonil Coenzima A/metabolismo , Neovascularização Retiniana/patologia , Serina-Treonina Quinases TOR/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orlistate/uso terapêutico , Processamento de Proteína Pós-Traducional , Neovascularização Retiniana/tratamento farmacológico
9.
Angiogenesis ; 20(4): 599-613, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875379

RESUMO

Blockade of the glycolytic activator PFKFB3 in cancer cells (using a maximum tolerable dose of 70 mg/kg of the PFKFB3 blocker 3PO) inhibits tumor growth in preclinical models and is currently being tested as a novel anticancer treatment in phase I clinical trials. However, a detailed preclinical analysis of the effects of such maximum tolerable dose of a PFKFB3 blocker on the tumor vasculature is lacking, even though tumor endothelial cells are hyper-glycolytic. We report here that a high dose of 3PO (70 mg/kg), which inhibits cancer cell proliferation and reduces primary tumor growth, causes tumor vessel disintegration, suppresses endothelial cell growth for protracted periods, (model-dependently) aggravates tumor hypoxia, and compromises vascular barrier integrity, thereby rendering tumor vessels more leaky and facilitating cancer cell intravasation and dissemination. These findings contrast to the effects of a low dose of 3PO (25 mg/kg), which induces tumor vessel normalization, characterized by vascular barrier tightening and maturation, but reduces cancer cell intravasation and metastasis. Our findings highlight the importance of adequately dosing a glycolytic inhibitor for anticancer treatment.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fosfofrutoquinase-2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Melanoma Experimental/ultraestrutura , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/patologia , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfofrutoquinase-2/metabolismo , Piridinas/farmacologia
10.
Expert Opin Ther Targets ; 21(3): 239-247, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28081641

RESUMO

INTRODUCTION: Antiangiogenic drugs were originally designed to starve tumors by cutting off their vascular supply. Unfortunately, when these agents are used as monotherapy or in combination with chemotherapy, they provide only modest survival benefits in the order of weeks to months in most cancer patients. Strategies normalizing the disorganized tumor vasculature offer the potential to increase tumor perfusion and oxygenation, and to improve the efficacy of radio-, chemo- and immunotherapy, while reducing metastasis. Areas covered: This review discusses tumor vascular normalization (TVN) as an alternative strategy for anti-angiogenic cancer treatment. We summarize (pre)-clinical strategies that have been developed to normalize tumor vessels as well as their potential to enhance standard therapy. Notably, we describe how targeting endothelial cell metabolism offers new possibilities for antiangiogenic therapy through evoking TVN. Expert opinion: Several drugs targeting VEGF signaling are now clinically used for antiangiogenic cancer treatment. However, excessive blood vessel pruning impedes perfusion and causes tumor hypoxia, known to promote cancer cell dissemination and impair radio-, chemo- and immunotherapy. Normalized vessels lessen tumor hypoxia, impair cancer cell intravasation and enhance anticancer treatment. New data indicate that targeting endothelial cell metabolism is an alternative strategy of antiangiogenic cancer treatment via promotion of TVN.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Células Endoteliais/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Cancer Cell ; 30(6): 968-985, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27866851

RESUMO

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


Assuntos
Cisplatino/administração & dosagem , Células Epiteliais/metabolismo , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Animais , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Tratamento Farmacológico , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Tamoxifeno/farmacologia
12.
Nat Commun ; 7: 12240, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436424

RESUMO

During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.


Assuntos
Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Simulação por Computador , Técnicas de Silenciamento de Genes , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/farmacologia , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Piridinas/farmacologia , Pirróis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Med Chem ; 58(18): 7224-40, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26263024

RESUMO

Matrix metalloproteinases (MMPs) have been shown to be involved in tumor-induced angiogenesis. In particular, MMP-2, MMP-9, and MMP-14 have been reported to be crucial for tumor angiogenesis and the formation of metastasis, thus becoming attractive targets in cancer therapy. Here, we report our optimization effort to identify novel N-isopropoxy-arylsulfonamide hydroxamates with improved inhibitory activity toward MMP-2, MMP-9, and MMP-14 with respect to the previously discovered compound 1. A new series of hydroxamates was designed, synthesized, and tested for their antiangiogenic activity using in vitro assays with human umbilical vein endothelial cells (HUVECs). A nanomolar MMP-2, MMP-9, and MMP-14 inhibitor was identified, compound 3, able to potently inhibit angiogenesis in vitro and also in vivo in the matrigel sponge assay in mice. Finally, X-ray crystallographic and docking studies were conducted for compound 3 in order to investigate its binding mode to MMP-9 and MMP-14.


Assuntos
Inibidores da Angiogênese/química , Ácidos Hidroxâmicos/química , Inibidores de Metaloproteinases de Matriz/química , Sulfonamidas/química , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia
14.
Cancer J ; 21(4): 244-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222074

RESUMO

Angiogenesis has been traditionally studied by focusing on growth factors and other proangiogenic signals, but endothelial cell (EC) metabolism has not received much attention. Nonetheless, glycolysis, one of the major metabolic pathways that converts glucose to pyruvate, is required for the phenotypic switch from quiescent to angiogenic ECs. During vessel sprouting, the glycolytic activator PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3) promotes vessel branching by rendering ECs more competitive to reach the tip of the vessel sprout, whereas fatty acid oxidation selectively regulates proliferation of endothelial stalk cells. These studies show that metabolic pathways in ECs regulate vessel sprouting, more importantly than anticipated. This review discusses the recently discovered role of glycolysis and fatty acid oxidation in vessel sprouting. We also highlight how metabolites can influence EC behavior as signaling molecules by modulating posttranslational modification.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Neovascularização Patológica/metabolismo , Humanos , Oxirredução , Fosfofrutoquinase-2/metabolismo , Processamento de Proteína Pós-Traducional
15.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25830893

RESUMO

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Assuntos
Carbono/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Nucleotídeos/biossíntese , Ácido Acético/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , DNA/biossíntese , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Inativação Gênica , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Nucleotídeos/química , Nucleotídeos/farmacologia , Oxirredução/efeitos dos fármacos , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
16.
Cytokine Growth Factor Rev ; 25(4): 473-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25169850

RESUMO

Vascular endothelial growth factor (VEGF) is a key growth factor driving angiogenesis (i.e. the formation of new blood vessels) in health and disease. Pharmacological blockade of VEGF signaling to inhibit tumor angiogenesis is clinically approved but the survival benefit is limited as patients invariably acquire resistance. This is partially mediated by the intrinsic flexibility of tumor cells to adapt to VEGF-blockade. However, it has become clear that tumor stromal cells also contribute to the resistance. Originally, VEGF was thought to specifically target endothelial cells (ECs) but it is now clear that many stromal cells also respond to VEGF signaling, making anti-VEGF therapy more complex than initially anticipated. A more comprehensive understanding of the complex responses of stromal cells to VEGF-blockade might inform the design of improved anti-angiogenic agents.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Células da Medula Óssea/metabolismo , Células Endoteliais/citologia , Fibroblastos/metabolismo , Humanos , Células Mieloides/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Microambiente Tumoral
17.
Cell Metab ; 19(1): 37-48, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24332967

RESUMO

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Assuntos
Glicólise , Neovascularização Patológica/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Fosfofrutoquinase-2/metabolismo , Piridinas/farmacologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
18.
Cancer Treat Res ; 159: 401-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24114493

RESUMO

In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Inflamação/tratamento farmacológico , Neoplasias/prevenção & controle , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Inflamação/complicações , Neoplasias/irrigação sanguínea , Neoplasias/etiologia , Neovascularização Patológica/complicações
19.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911327

RESUMO

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Assuntos
Células Endoteliais/metabolismo , Glicólise , Neovascularização Fisiológica , Fosfofrutoquinase-2/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/citologia , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/genética , Pseudópodes/metabolismo , Peixe-Zebra
20.
Neoplasia ; 15(2): 133-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23441128

RESUMO

The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-ß(1) (TGFß(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFß(1).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neovascularização Patológica , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Imunidade Inata/genética , Células Matadoras Naturais/citologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Fator de Crescimento Transformador beta1/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA