Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 16(6): 1427-1450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684862

RESUMO

Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.


Assuntos
Células Endoteliais , Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Lentivirus , Fígado , Animais , Hemofilia A/terapia , Hemofilia A/genética , Vetores Genéticos/genética , Células Endoteliais/metabolismo , Camundongos , Lentivirus/genética , Terapia Genética/métodos , Fígado/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Transdução Genética/métodos , Hepatócitos/metabolismo , Hepatócitos/virologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
2.
Nat Commun ; 13(1): 2454, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508619

RESUMO

Liver gene therapy with adeno-associated viral (AAV) vectors delivering clotting factor transgenes into hepatocytes has shown multiyear therapeutic benefit in adults with hemophilia. However, the mostly episomal nature of AAV vectors challenges their application to young pediatric patients. We developed lentiviral vectors, which integrate in the host cell genome, that achieve efficient liver gene transfer in mice, dogs and non-human primates, by intravenous delivery. Here we first compare engineered coagulation factor VIII transgenes and show that codon-usage optimization improved expression 10-20-fold in hemophilia A mice and that inclusion of an unstructured XTEN peptide, known to increase the half-life of the payload protein, provided an additional >10-fold increase in overall factor VIII output in mice and non-human primates. Stable nearly life-long normal and above-normal factor VIII activity was achieved in hemophilia A mouse models. Overall, we show long-term factor VIII activity and restoration of hemostasis, by lentiviral gene therapy to hemophilia A mice and normal-range factor VIII activity in non-human primate, paving the way for potential clinical application.


Assuntos
Hemofilia A , Animais , Criança , Cães , Fator VIII/genética , Terapia Genética , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Fígado/metabolismo , Camundongos , Primatas/genética
3.
Nat Med ; 27(8): 1458-1470, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140705

RESUMO

Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.


Assuntos
Ácidos Nucleicos Livres/genética , Vetores Genéticos/genética , Ácidos Nucleicos Livres/efeitos adversos , Terapia Genética , Humanos , Leucemia/genética , Leucemia/terapia , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Linfoma/genética , Linfoma/terapia
4.
Haemophilia ; 27 Suppl 3: 122-125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32537776

RESUMO

Over the last decade, the development of new treatments for haemophilia has progressed at a very rapid pace. Despite all the promising advances in protein products, the prospect offered by gene therapy of a single potentially lifelong treatment remains attractive for people with haemophilia. Transfer to the liver of coagulation factor VIII (FVIII) or factor IX (FIX) transgenes has indeed the potential to stably restore the dysfunctional coagulation process. Recombinant adeno-associated virus (AAV)-derived vectors are widely employed for liver-directed gene therapy, given their very good efficacy and safety profile, shown in several preclinical and clinical studies. However, there are some limitations associated with AAV vectors, such as their predominantly episomal nature in the nucleus of target cells and the widespread pre-existing immunity against the parental virus in humans. By contrast, HIV-derived lentiviral vectors (LV) integrate into the target cell chromatin and are maintained as the cells duplicate their genome, a potential advantage for establishing long-term expression especially in paediatric patients, in which the liver undergoes substantial growth. Systemic administration of LV allowed stable multi-year transgene expression in the liver of mice and dogs. More recently, improved phagocytosis-shielded LV were generated, which, following intravenous administration to non-human primates, showed selective targeting of liver and spleen and enhanced hepatocyte gene transfer, achieving up to supra-normal activity of both human FVIII and FIX transgenes. These studies support further preclinical assessment and clinical evaluation of in vivo liver-directed LV gene therapy for haemophilia.


Assuntos
Hemofilia A , Animais , Criança , Dependovirus/genética , Cães , Fator IX/genética , Terapia Genética , Vetores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Camundongos , Transgenes
5.
Mol Ther Methods Clin Dev ; 19: 411-425, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33294490

RESUMO

Lentiviral vectors (LVs) are increasingly employed in gene and cell therapy. Standard laboratory production of LVs is not easily scalable, and research-grade LVs often contain contaminants that can interfere with downstream applications. Moreover, purified LV production pipelines have been developed mainly for costly, large-scale, clinical-grade settings. Therefore, a standardized and cost-effective process is still needed to obtain efficient, reproducible, and properly executed experimental studies and preclinical development of ex vivo and in vivo gene therapies, as high infectivity and limited adverse reactions are important factors potentially influencing experimental outcomes also in preclinical settings. We describe here an optimized laboratory-scale workflow whereby an LV-containing supernatant is purified and concentrated by sequential chromatographic steps, obtaining biologically active LVs with an infectious titer and specific activity in the order of 109 transducing unit (TU)/mL and 5 × 104 TU/ng of HIV Gag p24, respectively. The purification workflow removes >99% of the starting plasmid, DNA, and protein impurities, resulting in higher gene transfer and editing efficiency in severe combined immunodeficiency (SCID)-repopulating hematopoietic stem and progenitor cells (HSPCs) ex vivo, as well as reduced activation of inflammatory responses ex vivo and in vivo as compared to TU-matched, laboratory-grade vectors. Our results highlight the value of accessible purified LV production for experimental studies and preclinical testing.

6.
Sci Transl Med ; 11(493)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118293

RESUMO

Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.


Assuntos
Terapia Genética , Vetores Genéticos/uso terapêutico , Lentivirus/genética , Fígado/patologia , Fagocitose , Animais , Antígeno CD47/metabolismo , Técnicas de Transferência de Genes , Hepatócitos/metabolismo , Humanos , Tolerância Imunológica , Imunidade Inata , Células de Kupffer/metabolismo , Macaca , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fagócitos/metabolismo , Distribuição Tecidual
7.
Sci Transl Med ; 7(277): 277ra28, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25739762

RESUMO

We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia.


Assuntos
Terapia Genética , Hemofilia B/terapia , Lentivirus/genética , Fígado/patologia , Animais , Coagulação Sanguínea , Modelos Animais de Doenças , Cães , Feminino , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Fatores de Tempo , Transdução Genética , Transgenes
8.
Nat Methods ; 8(10): 861-9, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857672

RESUMO

Integrative gene transfer methods are limited by variable transgene expression and by the consequences of random insertional mutagenesis that confound interpretation in gene-function studies and may cause adverse events in gene therapy. Site-specific integration may overcome these hurdles. Toward this goal, we studied the transcriptional and epigenetic impact of different transgene expression cassettes, targeted by engineered zinc-finger nucleases to the CCR5 and AAVS1 genomic loci of human cells. Analyses performed before and after integration defined features of the locus and cassette design that together allow robust transgene expression without detectable transcriptional perturbation of the targeted locus and its flanking genes in many cell types, including primary human lymphocytes. We thus provide a framework for sustainable gene transfer in AAVS1 that can be used for dependable genetic manipulation, neutral marking of the cell and improved safety of therapeutic applications, and demonstrate its feasibility by rapidly generating human lymphocytes and stem cells carrying targeted and benign transgene insertions.


Assuntos
Técnicas de Transferência de Genes , Mutagênese Insercional/genética , Mutagênese Sítio-Dirigida , Dependovirus/genética , Humanos , Receptores CCR5/genética , Integração Viral/genética
9.
Blood ; 114(25): 5152-61, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19794140

RESUMO

We previously showed that incorporating target sequences for the hematopoietic-specific microRNA miR-142 into an antigen-encoding transgene prevents antigen expression in antigen-presenting cells (APCs). To determine whether this approach induces immunologic tolerance, we treated mice with a miR-142-regulated lentiviral vector encoding green fluorescent protein (GFP), and subsequently vaccinated the mice against GFP. In contrast to control mice, no anti-GFP response was observed, indicating that robust tolerance to the transgene-encoded antigen was achieved. Furthermore, injection of the miR-142-regulated vector induced a population of GFP-specific regulatory T cells. Interestingly, an anti-GFP response was observed when microRNA miR-122a was inserted into the vector and antigen expression was detargeted from hepatocytes as well as APCs. This demonstrates that, in the context of lentiviral vector-mediated gene transfer, detargeting antigen expression from professional APCs, coupled with expression in hepatocytes, can induce antigen-specific immunologic tolerance.


Assuntos
Antígenos/imunologia , Tolerância Imunológica/imunologia , MicroRNAs/genética , Linfócitos T Reguladores/imunologia , Transgenes/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/citologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lentivirus/genética , Fígado/citologia , Fígado/imunologia , Fígado/metabolismo , Camundongos , Microscopia Confocal , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Transgenes/genética
10.
Nat Biotechnol ; 25(12): 1457-67, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18026085

RESUMO

We have shown previously that transgene expression can be suppressed in hematopoietic cells using vectors that are responsive to microRNA (miRNA) regulation. Here we investigate the potential of this approach for more sophisticated control of transgene expression. Analysis of the relationship between miRNA expression levels and target mRNA suppression suggested that suppression depends on a threshold miRNA concentration. Using this information, we generated vectors that rapidly adjust transgene expression in response to changes in miRNA expression. These vectors sharply segregated transgene expression between closely related states of therapeutically relevant cells, including dendritic cells, hematopoietic and embryonic stem cells, and their progeny, allowing positive/negative selection according to the cells' differentiation state. Moreover, two miRNA target sites were combined to restrict transgene expression to a specific cell type in the liver. Notably, the vectors did not detectably perturb endogenous miRNA expression or regulation of natural targets. The properties of miRNA-regulated vectors should allow for safer and more effective therapeutic applications.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica/fisiologia , Marcação de Genes/métodos , MicroRNAs/genética , Células-Tronco/citologia , Células-Tronco/fisiologia , Transgenes/genética , Animais , Diferenciação Celular/genética , Humanos
11.
Blood ; 110(13): 4144-52, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17726165

RESUMO

A longstanding goal for the treatment of hemophilia B is the development of a gene transfer strategy that can maintain sustained production of clotting factor IX (F.IX) in the absence of an immune response. To this end, we have sought to use lentiviral vectors (LVs) as a means for systemic gene transfer. Unfortunately, initial evaluation of LVs expressing F.IX from hepatocyte-specific promoters failed to achieve sustained F.IX expression in hemophilia B mice due to the induction of an anti-F.IX cellular immune response. Further analysis suggested that this may be a result of off-target transgene expression in hematopoietic-lineage cells of the spleen. In order to overcome this problem, we modified our vector to contain a target sequence for the hematopoietic-specific microRNA, miR-142-3p. This eliminated off-target expression in hematopoietic cells, and enabled sustained gene transfer in hemophilia B mice for more than 280 days after injection. Treated mice had more than 10% normal F.IX activity, no detectable anti-F.IX antibodies, and were unresponsive to F.IX immunization. Importantly, the mice survived tail-clip challenge, thus demonstrating phenotypic correction of their bleeding diathesis. This work, which is among the first applications to exploit the microRNA regulatory pathway, provides the basis for a promising new therapy for the treatment of hemophilia B.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Hemofilia B/terapia , Lentivirus/genética , MicroRNAs/farmacologia , Animais , Anticorpos , Células Sanguíneas/metabolismo , Fator IX/administração & dosagem , Fator IX/imunologia , Técnicas de Transferência de Genes , Camundongos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA