Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
3.
Ann Surg Oncol ; 31(9): 6138-6146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38869763

RESUMO

BACKGROUND: The highly metastatic nature of pancreatic ductal adenocarcinoma (PDAC) and the difficulty to achieve favorable patient outcomes emphasize the need for novel therapeutic solutions. For preclinical evaluations, genetically engineered mouse models are often used to mimic human PDAC but frequently fail to replicate synchronous development and metastatic spread. This study aimed to develop a transplantation model to achieve synchronous and homogenous PDAC growth with controlled metastatic patterns in the liver. METHODS: To generate an orthotopic PDAC model, the DT6606 cell line was injected into the pancreas head of C57BL/6 mice, and their survival was monitored over time. To generate a heterotopic transplantation model, growing doses of three PDAC cell lines (DT6606, DT6606lm, and K8484) were injected into the portal vein of mice. Magnetic resonance imaging (MRI) was used to monitor metastatic progression, and histologic analysis was performed. RESULTS: Orthotopically injected mice succumbed to the tumor within an 11-week period (average survival time, 78.2 ± 4.45 days). Post-mortem examinations failed to identify liver metastasis. In the intraportal model, 2 × 105 DT6606 cells resulted in an absence of liver metastases by day 21, whereas 5 × 104 DT6606lm cells and 7 × 104 K8484 cells resulted in steady metastatic growth. Higher doses caused significant metastatic liver involvement. The use of K8484 cells ensured the growth of tumors closely resembling the histopathologic characteristics of human PDAC. CONCLUSIONS: This report details the authors' efforts to establish an "optimal" murine model for inducing metastatic PDAC, which is critical for advancing our understanding of the disease and developing more effective treatments.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/secundário , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Humanos , Células Tumorais Cultivadas , Modelos Animais de Doenças , Taxa de Sobrevida , Transplante de Neoplasias
4.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684863

RESUMO

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Assuntos
Aspartato-Amônia Ligase , Modelos Animais de Doenças , Doenças Renais Policísticas , Animais , Humanos , Camundongos , Aspartato-Amônia Ligase/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/antagonistas & inibidores , Progressão da Doença , Rim/patologia , Rim/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/genética
5.
Cancer Cell ; 41(11): 1892-1910.e10, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863068

RESUMO

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Antígeno CTLA-4/metabolismo , Microambiente Tumoral/genética , Macrófagos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia
6.
Comput Methods Programs Biomed ; 230: 107363, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36720181

RESUMO

BACKGROUND AND OBJECTIVES: Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome. METHODOLOGY: The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation. RESULTS: Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues. CONCLUSIONS: Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias da Bexiga Urinária , Camundongos , Animais , Terapia Fototérmica , Ouro , Neoplasias da Bexiga Urinária/terapia , Hipertermia Induzida/métodos , Linhagem Celular Tumoral
7.
Sci Transl Med ; 14(653): eabl4106, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857642

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor characterized by a strongly immunosuppressive tumor microenvironment (TME) that represents a barrier also for the development of effective immunotherapies. The possibility to revert this hostile TME by immunoactivating cytokines is hampered by the severe toxicity associated with their systemic administration. Here, we exploited a lentiviral vector-based platform to engineer hematopoietic stem cells ex vivo with the aim of releasing, via their tumor-infiltrating monocyte/macrophage progeny, interferon-α (IFN-α) or interleukin-12 (IL-12) at the tumor site with spatial and temporal selectivity. Taking advantage of a syngeneic GBM mouse model, we showed that inducible release of IFN-α within the TME achieved robust tumor inhibition up to eradication and outperformed systemic treatment with the recombinant protein in terms of efficacy, tolerability, and specificity. Single-cell RNA sequencing of the tumor immune infiltrate revealed reprogramming of the immune microenvironment toward a proinflammatory and antitumoral state associated with loss of a macrophage subpopulation shown to be associated with poor prognosis in human GBM. The spatial and temporal control of IL-12 release was critical to overcome an otherwise lethal hematopoietic toxicity while allowing to fully exploit its antitumor activity. Overall, our findings demonstrate a potential therapeutic approach for GBM and set the bases for a recently launched first-in-human clinical trial in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Citocinas , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Interferon-alfa , Interleucina-12/uso terapêutico , Camundongos , Microambiente Tumoral
8.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925229

RESUMO

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo , Proteômica/métodos , Sarcopenia/metabolismo , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos
9.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916885

RESUMO

Pulmonary infections caused by Mycobacterium abscessus (MA) have increased over recent decades, affecting individuals with underlying pathologies such as chronic obstructive pulmonary disease, bronchiectasis and, especially, cystic fibrosis. The lack of a representative and standardized model of chronic infection in mice has limited steps forward in the field of MA pulmonary infection. To overcome this challenge, we refined the method of agar beads to establish MA chronic infection in immunocompetent mice. We evaluated bacterial count, lung pathology and markers of inflammation and we performed longitudinal studies with magnetic resonance imaging (MRI) up to three months after MA infection. In this model, MA was able to establish a persistent lung infection for up to two months and with minimal systemic spread. Lung histopathological analysis revealed granulomatous inflammation around bronchi characterized by the presence of lymphocytes, aggregates of vacuolated histiocytes and a few neutrophils, mimicking the damage observed in humans. Furthermore, MA lung lesions were successfully monitored for the first time by MRI. The availability of this murine model and the introduction of the successfully longitudinal monitoring of the murine lung lesions with MRI pave the way for further investigations on the impact of MA pathogenesis and the efficacy of novel treatments.


Assuntos
Modelos Animais de Doenças , Pulmão/patologia , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium abscessus , Pneumonia Bacteriana/patologia , Animais , Doença Crônica , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/diagnóstico por imagem , Pneumonia Bacteriana/diagnóstico por imagem
10.
Magn Reson Imaging ; 68: 127-135, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004712

RESUMO

Preclinical cardiac MR is challenging and time-consuming. A fast and comprehensive acquisition protocol and standardized image post-processing may improve preclinical research, reducing acquisition time, costs and variability of results. In the present study, we evaluated the feasibility of a contrast-enhanced 3D IntraGate steady-state cine sequence (ce-3D-IG-cine) with short acquisition time (11 min) for a single-shot combined characterization of left ventricle (LV) remodeling and infarct size (IS) in a mouse model of acute ischemia-reperfusion injury. Sixteen male C57BL/6N mice underwent 7T cardiac MR (Bruker, BioSpec 70/30) including optimized ce-3D-IG-cine (total scan time 11 min) at day 1, 5 and 28 after surgery. LV end-diastolic volume (EDVMR) and ejection fraction (EFMR) extracted from MR were compared to ones from short-axis (SA-EDVecho, SA-EFecho) and parasternal long-axis (LA-EDVecho, LA-EFecho) echocardiography. IS was manually and semiautomatically segmented from ce-3D-IG-cine using different standard deviation (SD +2, +3, +4, +5, +6 in respect to a reference tissue). Mice were sacrificed at day 28, immediately after imaging. IS at day 28 was compared to injury burden at histology. MR and echocardiographic morpho-functional parameters were compared, as IS from MR and histology. Bland-Altman plots were used to assess the agreement in ischemic burden segmentation. Volumetric and functional parameters measured on ce-3D-IG-cine correlated to the correspondent echocardiographic parameter (EDVMR vs SA-EDVecho: ρ = 0.813; EDVMR vs LA-EDVecho: ρ = 0.845; EFMR vs SA-EFecho ρ = 0.612; EFMR vs LA-EFecho ρ = 0.791; p < 0.001 in all cases). Manually segmented IS strongly correlated with the scar at histology (ρ = 0.904, p < 0.001). A threshold of +3SD showed the highest performance for semiautomatic assessment of IS compared to manual segmentation (ρ = 0.965, p < 0.001), with an overall reproducibility of 73%, and a peak reproducibility of 80% at day 1. The ce-3D-IG-cine sequence, manually or semiautomatically segmented using 3SD threshold, allows fast and comprehensive LV morpho-functional and structural characterization in myocardial ischemia-reperfusion injury model.


Assuntos
Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Traumatismo por Reperfusão/diagnóstico por imagem , Animais , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
11.
Stem Cells Transl Med ; 8(10): 1107-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31140762

RESUMO

Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.


Assuntos
Células Epiteliais/metabolismo , Timo/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Células Epiteliais/citologia , Camundongos , Camundongos Nus , Regeneração
12.
Acta Diabetol ; 56(9): 1013-1022, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30989379

RESUMO

AIM: More than 40% of pancreatic ductal adenocarcinoma (PDAC) patients have glucose intolerance or diabetes. The association has led to two hypotheses: PDAC causes diabetes or diabetes shares risk factors for the development of PDAC. In order to elucidate the relationship between diabetes and PDAC, we investigated the glucose metabolism during tumorigenesis in the LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre (KPC) mouse, a genetically engineered model of PDAC. METHODS: Male and female KPCs have been fed with standard diet (SD) or high-fat diet (HFD). The imaging-based 4-class tumor staging was used to follow pancreatic cancer development. Not fasting glycemia, 4-h fasting glycemia, insulin, C-peptide, glucose tolerance after OGTT and abdominal fat volume were measured during tumorigenesis. RESULTS: PDAC development did not lead to an overt diabetic phenotype or to any alterations in glucose tolerance in KPC fed with SD. Consumption of HFD induced higher body weight/abdominal fat volume and worsened glucose homeostasis both in control CRE mice and only in early tumorigenesis stages of the KPC mice, excluding that the cancer development itself acts as a trigger for the onset of dysmetabolic features. CONCLUSION: Our data demonstrate that carcinogenesis in KPC mice is not associated with paraneoplastic diabetes.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carcinogênese/metabolismo , Glucose/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Metabolismo dos Carboidratos/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas
13.
Carcinogenesis ; 39(9): 1197-1206, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30052815

RESUMO

Background: The widely used genetically engineered mouse LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre, termed KPC, spontaneously develops pancreatic cancer mirroring all phases of the carcinogenesis but in asynchronous manner. Preclinical studies need defined criteria for the enrollment of the KPC sharing the same stage of carcinogenesis. Aim: To define a tumor-staging criteria using magnetic resonance (MR) and ultrasound (US) and then to correlate the imaging stage with overall survival of KPC mice. Methods: Forty KPC (2- to 5-month-old mice) were imaged by axial fat-saturated T2-weighted sequences at MR and by brightness mode US to establish criteria for tumor staging. Immunohistopathology was used to validate imaging. A second cohort of 25 KPC was used to correlate imaging stage with survival by Kaplan-Meier analysis. Results: We defined a four-class tumor staging system ranking from stages 1 to 4. Stage 1 was described as radiologically healthy pancreas; precursor lesions were detectable in histology only. Cystic papillary neoplasms, besides other premalignant alterations, marked stage 2 in the absence of cancer nodules. Stages 3 and 4 identified mice affected by overt pancreatic cancer with size <5 or ≥5 mm, respectively. Regarding the prognosis, this staging system correlated with disease-related mortality whatever may be the KPC age when they staged. Conclusion: This imaging-based four-class tumor staging is an effective and safe method to stage pancreatic cancer development in KPC. As a result, regardless of their age, KPC mice can be synchronized based on prognosis or on a specific phase of tumorigenesis, such as the early but already radiologically detectable one (stage 2).


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estadiamento de Neoplasias/métodos , Pâncreas/fisiologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/patologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1172-1182, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408646

RESUMO

Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.


Assuntos
Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Junção Neuromuscular/metabolismo , Engenharia de Proteínas , Fatores de Transcrição , Regulação para Cima , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Utrofina/genética , Dedos de Zinco
15.
Sci Rep ; 6: 29353, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383250

RESUMO

Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.


Assuntos
Imunidade Adaptativa , Apolipoproteínas E/fisiologia , Aterosclerose/prevenção & controle , Dieta Ocidental , Microbioma Gastrointestinal/imunologia , Inflamação/prevenção & controle , Animais , Apolipoproteínas E/sangue , Proteínas de Bactérias/administração & dosagem , Glicemia/metabolismo , Citocinas/biossíntese , Citocinas/genética , Hormônios/sangue , Hormônios/genética , Insulina/sangue , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Porinas/administração & dosagem
16.
Oncoimmunology ; 5(5): e1122860, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27467932

RESUMO

The factors that determine whether disseminated transformed cells in vivo yield neoplastic lesions have only been partially identified. We established an ad hoc model of peritoneal carcinomatosis by injecting colon carcinoma cells in mice. Tumor cells recruit inflammatory leukocytes, mostly macrophages, and generate neoplastic peritoneal lesions. Phagocyte depletion via clodronate treatment reduces neoplastic growth. Colon carcinoma cells release a prototypic damage-associated molecular pattern (DAMP)/alarmin, High Mobility Group Box1 (HMGB1), which attracts leukocytes. Exogenous HMGB1 accelerates leukocyte recruitment, macrophage infiltration, tumor growth and vascularization. Lentiviral-based HMGB1 knockdown or pharmacological interference with its extracellular impair macrophage recruitment and tumor growth. Our findings provide a preclinical proof of principle that strategies based on preventing HMGB1-driven recruitment of leukocytes could be used for treating peritoneal carcinomatosis.

17.
J Am Soc Nephrol ; 27(7): 1958-69, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26534924

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.


Assuntos
Desoxiglucose/uso terapêutico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos
18.
PLoS One ; 10(11): e0142111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26554362

RESUMO

Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.


Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/patologia , Imageamento por Ressonância Magnética , Músculo Esquelético/patologia , Regeneração/fisiologia , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Artéria Femoral , Membro Posterior/patologia , Membro Posterior/fisiologia , Masculino , Camundongos , Músculo Esquelético/fisiologia
20.
Eur J Cancer ; 50(14): 2478-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060826

RESUMO

Mesenchymal stem cells (MSC) as vehicles of therapeutic genes represent a unique tool to activate drugs within a neoplastic mass due to their property to home and engraft into tumours. In particular, MSC expressing the cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) have been previously demonstrated to inhibit growth of subcutaneous prostate cancer xenografts thanks to their ability to convert the non-toxic 5-fluorocytosine into the antineoplastic 5-fluorouracil. Since both the immune system and the tumour microenvironment play a crucial role in directing cancer progression, in order to advance towards clinical applications, we tested the therapeutic potential of this approach on animal models that develop autochthonous prostate cancer and preserve an intact immune system. As cell vectors, we employed adipose-tissue and bone-marrow MSC. CD-MSC toxicity on murine prostate cancer cells and tumour tropism were verified in vitro and ex-vivo before starting the preclinical studies. Magnetic Resonance Imaging was utilised to follow orthotopic tumour progression. We demonstrated that intravenous injections of CD-MSC cells, followed by intraperitoneal administration of 5-fluorocytosine, caused tumour regression in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which develops aggressive and spontaneous prostate cancer. These results add new insights to the therapeutic potential of specifically engineered MSC in prostate cancer disease.


Assuntos
Adenocarcinoma/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Neoplasias da Próstata/terapia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Citosina Desaminase/sangue , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Modelos Animais de Doenças , Flucitosina/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pentosiltransferases/biossíntese , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA