Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Neuroscience ; 556: 25-30, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094819

RESUMO

Cancer and depression are closely interrelated, particularly in patients with advanced cancer, who often present with comorbid anxiety and depression for various reasons. Recently, there has been a growing interest in the study of depression in cancer patients, with the aim of assessing the possible triggers, predictors, adverse events, and possible treatment options for depression in several common cancers. The objective of this narrative review is to synthesize the extant literature on the relationship between the occurrence and progression of depression in several common patient categories. The authors conducted a comprehensive review of 75 articles published in PubMed over the past five years. This review was further evaluated in the present paper. Ultimately, it was determined that depression is a prevalent and detrimental phenomenon among cancer patients, particularly those with advanced disease. Consequently, there is a pressing need to prioritize research and interventions aimed at improving the quality of life and psychosocial well-being of cancer patients, including those with advanced disease. The relationship between cancer and depression has been evolving dynamically in recent times. The current research findings indicate a strong association between cancer and depression. However, the direction of causality remains unclear. Focusing on depression in cancer patients may, therefore, be beneficial for these patients.

2.
Sci Rep ; 14(1): 18371, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112494

RESUMO

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an epigenetic regulator that plays critical roles in tumours. However, the DNA methylation alteration patterns driven by UHRF1 and the related differentially expressed tumour-related genes remain unclear. In this study, a UHRF1-shRNA MCF-7 cell line was constructed, and whole-genome bisulfite sequencing and RNA sequencing were performed. The DNA methylation alteration landscape was elucidated, and DNA methylation-altered regions (DMRs) were found to be distributed in both gene bodies and adjacent regions. The DMRs were annotated and categorized into 488 hypermethylated/1696 hypomethylated promoters and 1149 hypermethylated/5501 hypomethylated gene bodies. Through an integrated analysis with the RNA sequencing data, 217 methylation-regulated upregulated genes and 288 downregulated genes were identified, and these genes were primarily enriched in nervous system development and cancer signalling pathways. Further analysis revealed 21 downregulated oncogenes and 15 upregulated TSGs. We also showed that UHRF1 silencing inhibited cell proliferation and migration and suppressed tumour growth in vivo. Our study suggested that UHRF1 and the oncogenes or TSGs it regulates might serve as biomarkers and targets for breast cancer treatment.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células MCF-7 , Feminino , Proliferação de Células/genética , Animais , Regiões Promotoras Genéticas , Camundongos , Epigênese Genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Movimento Celular/genética
3.
ACS Nano ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102459

RESUMO

Recent years have witnessed the explosive development of highly sensitive smart sensors based on conductive polymer foam materials. However, the design and development of multifunctional polymeric foam composites as smart sensors applied in complex solvent and oil environments remain a critical challenge. Herein, we design and synthesize vinyl-terminated polytrifluoropropylmethylsiloxane through anionic ring-opening polymerization to fabricate fluorosilicone rubber foam (FSiRF) materials with nanoscale wrinkled surfaces and reactive Si-H groups via a green and rapid chemical foaming strategy. Based on the strong adhesion between FSiRF materials and consecutive oxidized ketjen black (OKB) nano-network, multifunctional FSiRF nanocomposites were prepared by a dip-coating strategy followed by fluoroalkylsilane modification. The optimized F-OKB@FSiRF nanocomposites exhibit outstanding mechanical flexibility in wide-temperature range (100 cycle compressions from -20 to 200 °C), structure stability (no detached particles after being immersed into various aqueous solutions for up to 15 days), surface superhydrophobicity (water contact angle of 154° and sliding angle of ∼7°), and tunable electrical conductivity (from 10-5 to 10-2 S m-1). Additionally, benefiting from the combined actions of multiple lines of defense (low surface energy groups, physical barriers, and "shielding effect"), the F-OKB@FSiRF sensor presents excellent anti-swelling property and high sensitivity in monitoring both large-deformation and tiny vibrations generated by knocking the beaker, ultrasonic action, agitating, and sinking objects in weak-polar or nonpolar solvents. This work conceivably provides a chemical strategy for the fabrication of multifunctional polymeric foam nanocomposite materials as smart sensors for broad applications.

4.
Cell Death Differ ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060421

RESUMO

The transcription factor FOXM1, which plays critical roles in cell cycle progression and tumorigenesis, is highly expressed in rapidly proliferating cells and various tumor tissues, and high FOXM1 expression is related to a poor prognosis. However, the mechanism responsible for FOXM1 dysregulation is not fully understood. Here, we show that ABL1, a nonreceptor tyrosine kinase, contributes to the high expression of FOXM1 and FOXM1-dependent tumor development. Mechanistically, ABL1 directly binds FOXM1 and mediates FOXM1 phosphorylation at multiple tyrosine (Y) residues. Among these phospho-Y sites, pY575 is indispensable for FOXM1 stability as phosphorylation at this site protects FOXM1 from ubiquitin-proteasomal degradation. The interaction of FOXM1 with CDH1, a coactivator of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which is responsible for FOXM1 degradation, is significantly inhibited by Y575 phosphorylation. The phospho-deficient FOXM1(Y575F) mutant exhibited increased ubiquitination, a shortened half-life, and consequently a substantially decreased abundance. Compared to wild-type cells, a homozygous Cr-Y575F cell line expressing endogenous FOXM1(Y575F) that was generated by CRISPR/Cas9 showed obviously delayed mitosis progression, impeded colony formation and inhibited xenotransplanted tumor growth. Overall, our study demonstrates that ABL1 kinase is involved in high FOXM1 expression, providing clear evidence that ABL1 may act as a therapeutic target for the treatment of tumors with high FOXM1 expression.

5.
ACS Appl Mater Interfaces ; 16(21): 27177-27186, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753304

RESUMO

Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.


Assuntos
Curcumina , Dasatinibe , Portadores de Fármacos , Elipticinas , Muramidase , Nanopartículas , Muramidase/química , Muramidase/metabolismo , Nanopartículas/química , Curcumina/química , Curcumina/farmacologia , Animais , Humanos , Camundongos , Portadores de Fármacos/química , Dasatinibe/química , Dasatinibe/farmacologia , Elipticinas/química , Elipticinas/farmacologia , Células RAW 264.7 , Células MCF-7 , Tamanho da Partícula , Frutose/química , Interações Hidrofóbicas e Hidrofílicas , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
6.
Exp Cell Res ; 438(1): 114037, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631545

RESUMO

Anoikis plays a crucial role in the progression, prognosis, and immune response of lung adenocarcinoma (LUAD). However, its specific impact on LUAD remains unclear. In this study, we investigated the intricate interplay of nesting apoptotic factors in LUAD. By analyzing nine key nesting apoptotic factors, we categorized LUAD patients into two distinct clusters. Further examination of immune cell profiles revealed that Cluster A exhibited greater infiltration of innate immune cells than did Cluster B. Additionally, we identified two genes closely associated with prognosis and developed a predictive model to differentiate patients based on molecular clusters. Our findings suggest that the loss of specific anoikis-related genes could significantly influence the prognosis, tumor microenvironment, and clinical features of LUAD patients. Furthermore, we validated the expression and functional roles of two pivotal prognostic genes, solute carrier family 2 member 1 (SLC2A1) and sphingosine kinase 1 (SPHK1), in regulating tumor cell viability, migration, apoptosis, and anoikis. These results offer valuable insights for future mechanistic investigations. In conclusion, this study provides new avenues for advancing our understanding of LUAD, improving prognostic assessments, and developing more effective immunotherapy strategies.


Assuntos
Adenocarcinoma de Pulmão , Anoikis , Neoplasias Pulmonares , Humanos , Anoikis/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Apoptose/genética
7.
CNS Neurosci Ther ; 30(3): e14679, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528842

RESUMO

AIMS: Intracerebral hemorrhage (ICH) is a disease with high rates of disability and mortality. The role of epidermal growth factor receptor 1 (ERBB1) in ICH was elucidated in this study. METHODS: ICH model was constructed by injecting autologous arterial blood into the right basal ganglia. The protein level of ERBB1 was detected by western blot analysis. To up- and downregulation of ERBB1 in rats, intraventricular injection of a lentivirus overexpression vector of ERBB1 and AG1478 (a specific inhibitor of ERBB1) was used. The cell apoptosis, neuronal loss, and pro-inflammatory cytokines were assessed by TUNEL, Nissl staining, and ELISA. Meanwhile, behavioral cognitive impairment of ICH rats was evaluated after ERBB1-targeted interventions. RESULTS: ERBB1 increased significantly in brain tissue of ICH rats. Overexpression of ERBB1 remarkably reduced cell apoptosis and neuronal loss induced by ICH, as well as pro-inflammatory cytokines and oxidative stress. Meanwhile, the behavioral and cognitive impairment of ICH rats were alleviated after upregulation of ERBB1; however, the secondary brain injury (SBI) was aggravated by AG1478 treatment. Furthermore, the upregulation of PLC-γ and PKC in ICH rats was reversed by AG1478 treatment. CONCLUSIONS: ERBB1 can improve SBI and has a neuroprotective effect in experimental ICH rats via PLC-γ/PKC pathway.


Assuntos
Lesões Encefálicas , Hemorragia Cerebral , Receptores ErbB , Quinazolinas , Animais , Ratos , Apoptose , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Fosfolipase C gama/metabolismo , Ratos Sprague-Dawley , Tirfostinas , Receptores ErbB/metabolismo , Proteína Quinase C/metabolismo
8.
J Virol ; 98(4): e0156523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38445884

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Adenosina Trifosfatases/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , COVID-19/virologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Helicases/metabolismo , Concentração Inibidora 50 , RNA Helicases/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Feminino , Animais , Camundongos
9.
World Neurosurg ; 186: e305-e315, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38552785

RESUMO

BACKGROUND: The ventriculoperitoneal (VP) shunt is widely acknowledged as a treatment option for managing intracranial hypertension resulting from non-human immunodeficiency virus (HIV) cryptococcal meningitis (CM). Nonetheless, there is currently no consensus on the appropriate surgical indications for this procedure. Therefore, it is crucial to conduct a preoperative evaluation of patient characteristics and predict the outcome of the VP shunt to guide clinical treatment effectively. METHODS: A retrospective analysis was conducted on data from 85 patients with non-HIV CM who underwent VP shunt surgery at our hospital. The analysis involved studying demographic data, preoperative clinical manifestations, cerebrospinal fluid (CSF) characteristics, and surgical outcomes and comparisons between before and after surgery. A nomogram was developed and evaluated. RESULTS: The therapy outcomes of 71 patients improved, whereas 14 cases had worse outcomes. Age, preoperative cryptococcus count, and preoperative CSF protein levels were found to influence the surgical outcome. The nomogram exhibited exceptional predictive performance (area under the curve = 0.896, 95% confidence interval: 0.8292-0.9635). Internal validation confirmed the nomogram's excellent predictive capabilities. Moreover, decision curve analysis demonstrated the nomogram's practical clinical utility. CONCLUSIONS: The surgical outcome of VP shunt procedures patients with non-HIV CM was associated with age, preoperative cryptococcal count, and preoperative CSF protein levels. We developed a nomogram that can be used to predict surgical outcomes in patients with non-HIV CM.


Assuntos
Meningite Criptocócica , Nomogramas , Derivação Ventriculoperitoneal , Humanos , Meningite Criptocócica/cirurgia , Meningite Criptocócica/complicações , Meningite Criptocócica/líquido cefalorraquidiano , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Resultado do Tratamento , Idoso , Adulto Jovem
10.
Mol Carcinog ; 63(5): 938-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353288

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis and a 5-year survival rate of less than 11%. As a member of the CAP superfamily of proteins, the role of peptidase inhibitor 16 (Pi16) in tumor progression is still unclear. Immunohistochemistry and quantitative RT-PCR methods were used to detect the expression levels of Pi16 protein and mRNA in PDAC patients. CRISPR/Cas9 technology was used to knock out the expression of Pi16 in PDAC cell lines. In vivo and in vitro experiments were used to verify the effect of Pi16 on PDAC proliferation ability. By RNA sequencing, we found that oligoadenylate synthetase L (OASL) can serve as a potential downstream target of Pi16. The expression of Pi16 was higher in PDAC tissues than in matched adjacent tissues. High expression of Pi16 was associated with PDAC progression and poor prognosis. Overexpression of Pi16 could promote the proliferation of PDAC cells in vitro and in vivo. Bioinformatics analysis and coimmunoprecipitation assays showed that Pi16 could bind to OASL. Moreover, the functional recovery test confirmed that Pi16 could promote the proliferation of PDAC via OASL. Our present study demonstrates that Pi16 might participate in the occurrence and development of PDAC by regulating cell proliferation by binding to OASL, indicating that Pi16 might be a promising novel therapeutic target for PDAC.


Assuntos
2',5'-Oligoadenilato Sintetase , Nucleotídeos de Adenina , Carcinoma Ductal Pancreático , Glicoproteínas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Glicoproteínas/metabolismo , Proteínas de Transporte/metabolismo , 2',5'-Oligoadenilato Sintetase/metabolismo
11.
Adv Healthc Mater ; 13(15): e2304249, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325812

RESUMO

Triple-negative breast cancer (TNBC), due to its high malignant degree and strong invasion ability, leads to poor prognosis and easy recurrence, so effectively curbing the invasion of TNBC is the key to obtaining the ideal therapeutic effect. Herein, a therapeutic strategy is developed that curbs high invasions of TNBC by inhibiting cell physiological activity and disrupting tumor cell structural function to achieve the time and space dual-blockade. The time blockade is caused by the breakthrough of the tumor-reducing blockade based on the ferroptosis process and the oxidation-toxic free radicals generated by enhanced sonodynamic therapy (SDT). Meanwhile, alkyl radicals from 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) and 1O2 attacked the organelles of tumor cells under ultrasound (US), reducing the physiological activity of the cells. The attack of free radicals on the cytoskeleton, especially on the proteins of F-actin and its assembly pathway, achieves precise space blockade of TNBC. The damage to the cytoskeleton and the suppression of the repair process leads to a significant decline in the ability of tumor cells to metastasize and invade other organs. In summary, the FTM@AM nanoplatforms have a highly effective killing and invasion inhibition effect on invasive TNBC mediated by ultrasound, showcasing promising clinical transformation potential.


Assuntos
Estruturas Metalorgânicas , Neoplasias de Mama Triplo Negativas , Terapia por Ultrassom , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , Terapia por Ultrassom/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Linhagem Celular Tumoral , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Ferro/química , Invasividade Neoplásica , Nanopartículas/química , Camundongos Endogâmicos BALB C
12.
Biomacromolecules ; 25(2): 675-689, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38266160

RESUMO

The field of single-chain nanoparticles (SCNPs) continues to mature, and an increasing range of reports have emerged that explore the application of these small nanoparticles. A key application for SCNPs is in the field of drug delivery, and recent work suggests that SCNPs can be readily internalized by cells. However, limited attention has been directed to the delivery of small-molecule drugs using SCNPs. Moreover, studies on the physicochemical effects of drug loading on SCNP performance is so far missing, despite the accepted view that such small nanoparticles should be significantly affected by the drug loading content. To address this gap, we prepared a library of SCNPs bearing different amounts of a covalently conjugated therapeutic drug-sulfasalazine (SSZ). We evaluated the impact of the conjugated drug loading on both the synthesis and biological activity of SCNPs on pancreatic cancer cells (AsPC-1). Our results reveal that covalent drug conjugation to the side chains of the SCNP polymer precursor interferes with chain collapse and cross-linking, which demands optimization of reaction conditions to reach high degrees of cross-linking efficiencies. Small-angle neutron scattering and diffusion-ordered spectroscopy nuclear magnetic resonance (DOSY NMR) analyses reveal that SCNPs with a higher drug loading display larger sizes and looser structures, as well as increased hydrophobicity associated with a higher SSZ content. Increased SSZ loading led to reduced cellular uptake when assessed in vitro, whereby SCNP aggregation on the surface of AsPC-1 cells led to reduced toxicity. This work highlights the effects of drug loading on the drug delivery efficiency and biological behavior of SCNPs.


Assuntos
Nanopartículas , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Preparações Farmacêuticas
13.
Int J Nanomedicine ; 18: 7237-7255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076731

RESUMO

Background: Radiotherapy is one of the main clinical methods for the treatment of malignant tumors at present. However, its application is limited by the radiation resistance of some tumor cells and the irradiation damage to the surrounding normal tissues, and the limitation of radiotherapy dose also affects the therapeutic effect. Therefore, developing diagnostic and therapeutic agents with imaging and radiosensitizing functions is urgently needed to improve the accuracy and efficacy of radiotherapy. Materials and Strategy: Herein, we synthesized multifunctional nanotheranostic FRNPs nanoparticles based on gold nanocages (GNCs) and MnO2 for magnetic resonance (MR)/photoacoustic (PA) imaging and combined photothermal, radiosensitive and chemical therapy. A programmed therapy strategy based on FRNPs is proposed. First, photothermal therapy is applied to ablate large tumors and increase the sensitivity of the tumor tissue to radiotherapy, then X-ray radiation is performed to further reduce the tumor size, and finally chemotherapeutic agents are used to eliminate smaller residual tumors and distant metastases. Results: As revealed by fluorescence, MR and PA imaging, FRNPs achieved efficient aggregation and retention at tumor sites of mice after intravenous injection. In vivo studies have shown that the programmed treatment of FRNPs-injected nude mice which were exposed to X-ray after 808 laser irradiation achieved the greatest inhibition of tumor growth compared with other treatment groups. Moreover, no obvious systemic toxicity was observed in all groups of mice, indicating the good biocompatibility of FRNPs and the safety of the treatment scheme. Conclusion: To sum up, our work not only showed a new radiosensitizer, but also provided a promising theranostic strategy for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Ouro , Camundongos Nus , Compostos de Manganês , Linhagem Celular Tumoral , Óxidos , Fototerapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imagem Multimodal , Nanomedicina Teranóstica/métodos
14.
Biomacromolecules ; 24(11): 5046-5057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812059

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 µM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.


Assuntos
Proteínas Reguladoras de Apoptose , Neoplasias do Colo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Micelas , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Apoptose , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Transporte
15.
Exp Neurol ; 368: 114508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598879

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS: Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-ß, and NF-κB. RESULTS: The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-ß in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS: Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-ß/NF-κB signaling pathway.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Animais , Masculino , Ratos , Caveolina 1 , Hemorragia Cerebral/complicações , Doenças Neuroinflamatórias , NF-kappa B , Ratos Sprague-Dawley
16.
Brain Res ; 1820: 148556, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648093

RESUMO

BACKGROUND: Ferroptosis is an important therapeutic target to alleviate early brain injury (EBI) after subarachnoid hemorrhage (SAH), yet the mechanism of neuronal ferroptosis after SAH remains unclear. System xc- dysfunction is one of the key pathways to induce ferroptosis. System xc- activity is mainly regulated by the expression of xCT. This study was designed to investigate the effect of xCT expression and System xc- activity on ferroptosis and EBI in an experimental SAH model both in vitro and in vivo. METHODS: SAH was induced in adult male Sprague-Dawley rats by injecting autologous blood into the prechiasmatic cistern. Primary neurons treated with oxyhemoglobin (10 µM) were used to mimic SAH in vitro. Plasmid transfection was used to induce xCT overexpression. Western blotting, immunofluorescence staining, measurement of cystine uptake, enzyme-linked immunosorbent assay, transmission electron microscopy, Nissl staining, and a series of neurobehavioral tests were conducted to explore the role of xCT and System xc- activity in ferroptosis and EBI after SAH. RESULTS: We found that System xc- dysfunction induced ferroptosis and exacerbated EBI after SAH in rats. xCT deficiency after SAH resulted in System xc- dysfunction, weakened neuronal antioxidant capacity and activated neuronal ferroptosis. xCT overexpression improved neuronal antioxidant capacity and inhibited neuronal ferroptosis by restoring System xc- activity. Rats with xCT overexpression after SAH presented with attenuated brain edema and inflammation, increased neuronal survival, and ameliorated neurological deficits. CONCLUSIONS: Our study revealed that restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and EBI and improved neurological deficits after SAH.

17.
Front Med (Lausanne) ; 10: 1175798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332754

RESUMO

Background: The role of matrix metalloproteinase 9 (MMP-9) in the pathophysiology of chronic kidney disease (CKD), which is associated with a nearly two-fold greater risk for urinary calculi compared to people without CKD, has been demonstrated. The aim of the research is to evaluate the association between MMP-9-1562C>T polymorphism, MMP-9 serum levels and nephrolithiasis risk. Methods: A hospital-based case-control study involving 302 kidney stone patients and 408 controls without kidney stone from southern China was conducted. Sanger sequencing was used to genotype the MMP-9-1562C>T polymorphism. The serum MMP-9 was measured in 105 kidney stone patients and 77 controls by enzyme-linked immunosorbent assay. Results: Compared to the control group, the CT genotype was more frequent in nephrolithiasis patients (adjusted OR = 1.60, 95% CI = 1.09-2.37: the risk of developing nephrolithiasis in individuals with CT genotype compared to CC genotype). Moreover, there was also a higher frequency of CT/TT genotypes among patients with nephrolithiasis (adjusted OR = 1.49, 95% CI = 1.02-2.19: the risk of developing nephrolithiasis in individuals with CT/TT genotypes compared to CC genotype). The risk remained for the subgroups of patients aged >53, smokers with pack-years of smoking >20, non-drinkers, non-diabetic patients, patients with hypertension, recurrent episodes and calcium oxalate stones (OR = 2.26, 95% CI = 1.31-3.91; OR = 5.47, 95% CI = 1.10-27.30; OR = 1.76, 95% CI = 1.14-2.72; OR = 1.54, 95% CI = 1.03-2.30; OR = 1.97, 95% CI = 1.01-3.82; OR = 1.67, 95% CI = 1.06-2.62; OR = 1.54, 95% CI = 1.02-2.32, respectively). Biochemical parameters did not differ between genotypes. Compared to controls (18.57 ± 5.80 ng/mL), nephrolithiasis patients had significantly higher serum MMP-9 levels (30.17 ± 6.78 ng/mL, p < 0.001). The serum MMP-9 levels of patients with CT/TT genotypes of MMP-9-1562C>T were significantly higher than those with CC genotype (32.00 ± 6.33 vs. 29.13 ± 6.85 ng/mL, p = 0.037). Conclusion: The MMP-9-1562C>T polymorphism in association with its soluble protein increased the risk of kidney stone, thus suggesting it could be used as a susceptibility biomarker for nephrolithiasis. Further functional studies and larger studies that include environmental exposure data are needed to confirm the findings.

18.
Front Oncol ; 13: 1136729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213285

RESUMO

Background: The heterogeneous crosstalk between tumor cells and other cells in their microenvironment means a notable difference in clinical outcomes of head and neck squamous cell carcinoma (HNSCC). CD8+ T cells and macrophages are effector factors of the immune system, which have direct killing and phagocytosis effects on tumor cells. How the evolution of their role in the tumor microenvironment influences patients clinically remains a mystery. This study aims to investigate the complex communication networks in the HNSCC tumor immune microenvironment, elucidate the interactions between immune cells and tumors, and establish prognostic risk model. Methods: 20 HNSCC samples single-cell rna sequencing (scRNA-seq) data and bulk rna-seq data were derived from public databases. The "cellchat" R package was used to identify cell-to-cell communication networks and prognostic related genes, and then cell-cell communication (ccc) molecular subtypes were constructed by unsupervised clustering. Kaplan-Meier(K-M) survival analysis, clinical characteristics analysis, immune microenvironment analysis, immune cell infiltration analysis and CD8+T cell differentiation correlation analysis were performed. Finally, the ccc gene signature including APP, ALCAM, IL6, IL10 and CD6 was constructed based on univariate Cox analysis and multivariate Cox regression. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) analysis were used to evaluate the model in the train group and the validation group, respectively. Results: With CD8+T cells from naive to exhaustion state, significantly decreased expression of protective factor (CD6 gene) is associated with poorer prognosis in patients with HNSCC. The role of macrophages in the tumor microenvironment has been identified as tumor-associated macrophage (TAM), which can promote tumor proliferation and help tumor cells provide more nutrients and channels to facilitate tumor cell invasion and metastasis. In addition, based on the strength of all ccc in the tumor microenvironment, we identified five prognostic ccc gene signatures (cccgs), which were identified as independent prognostic factors by univariate and multivariate analysis. The predictive power of cccgs was well demonstrated in different clinical groups in train and test cohorts. Conclusion: Our study highlights the propensity for crosstalk between tumors and other cells and developed a novel signature on the basis of a strong association gene for cell communication that has a powerful ability to predict prognosis and immunotherapy response in patients with HNSCC. This may provide some guidance for developing diagnostic biomarkers for risk stratification and therapeutic targets for new therapeutic strategies.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37191981

RESUMO

Strain KLBMP 9083T, a novel actinobacterium, was isolated from weathered soils collected from a karst area in Anshun, Guizhou Province, PR China. The taxonomic position of strain KLBMP 9083T was studied using the polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain KLBMP 9083T formed a stabilized monophyletic clade with its closest relative strain Antribacter gilvus CGMCC 1.13856T (98.4 % 16S rRNA gene sequence similarity). The peptidoglycan hydrolysates contained alanine, glutamic acid, threonine and lysine. The polar lipids were composed of diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified phosphoglycolipid, an unidentified phospholipid and an unidentified glycolipid. The predominant menaquinones were MK-9(H8) (87.1 %), MK-9(H6) (7.3 %) and MK-9(H4) (5.6 %). The major fatty acids (>10 %) were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 72.3 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between strain KLBMP 9083T and A. gilvus CGMCC 1.13856T were 23.4 and 79.9 %, respectively. On the basis of morphological, chemotaxonomic and phylogenetic characteristics, strain KLBMP 9083T represents a novel species of the genus Antribacter, for which the name Antribacter soli sp. nov. is proposed. The type strain is KLBMP 9083T (=CGMCC 4.7737T=NBRC 115577T).


Assuntos
Actinobacteria , Actinomycetales , Ácidos Graxos/química , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos , Vitamina K 2
20.
IEEE Trans Nanobioscience ; 22(3): 655-663, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37015652

RESUMO

In recent years, nanoparticles camouflaged by red blood cell membrane (RBCM) have become a potential nano-drug delivery platform due to their good biocompatibility and immune evasion capability. Here, a multifunctional drug nanocarrier based on RBCM camouflaged mesoporous silica nanorods (MSNR) is presented, which can be used in pH and near-infrared (NIR) light triggered synergistic chemo-photothermal killing of cancer cells. To fabricate such a nanocarrier, MSNR and RBCM were prepared by the sol-gel method and modified hypotonic lysis method, respectively. Drugs were loaded into the pores of MSNR. Finally, RBCM was coated on the surface of MSNR by extrusion through a polycarbonate membrane. The advantages of the nanocarrier include: 1) MSNR can induce more cellular uptake than sphere shaped mesoporous silica nanoparticles. 2) The RBCM can reduce drug leakage and prevent clearance of the nanocarriers by macrophages. 3) By simultaneous loading doxorubicin (DOX) and indocyanine green (ICG), pH and NIR triggered synergistic chemo-photothermal therapy can be realized. In the experiment, we studied the drug releasing and cellular uptake of the nanocarriers in a breast cancer cell line (SKBR3 cells), in which a sufficient killing effect was observed. Such a multifunctional drug nanocarrier holds a broad application prospect in cancer treatment.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanotubos , Dióxido de Silício , Terapia Fototérmica , Fototerapia , Doxorrubicina/farmacologia , Eritrócitos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA