Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Front Pharmacol ; 15: 1396606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953104

RESUMO

Background: Niraparib, a poly ADP-ribose polymerase inhibitors (PARPi), has been widely applied in the intervention of epithelial ovarian, fallopian tube, or primary peritoneal cancer. Nevertheless, as of the present moment, there are limited instances demonstrating favorable outcomes stemming from niraparib therapy in patients with clear cell renal cell carcinoma (ccRCC). Case presentation: Here, we report a case of a 50-year-old patient with ccRCC who subsequently developed distant metastasis. The patient received monotherapy with pazopanib and combination therapy with axitinib and tislelizumab, demonstrating limited efficacy. Liquid biopsy revealed missense mutations in the CDK12 and RAD51C of the homologous recombination repair (HRR) pathway, suggesting potential sensitivity to PARPi. Following niraparib treatment, the patient's condition improved, with no significant side effects. Conclusion: In summary, patients with ccRCC harboring HRR pathway gene mutation may potentially benefit from niraparib. This will present more options for ccRCC patients with limited response to conventional treatments.

2.
Andrology ; 12(6): 1312-1323, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38221731

RESUMO

BACKGROUND: Non-obstructive azoospermia is the most severe form of male infertility. A testicular biopsy is required for the diagnosis of non-obstructive azoospermia, and the causal factors for non-obstructive azoospermia remain unknown. OBJECTIVES: To reduce the risk of multiple biopsies and identify factors that contribute to non-obstructive azoospermia, we proposed an integrated approach for the preoperative diagnosis and clinical management of non-obstructive azoospermia by applying the chromosome-spreading technique and whole-exome sequencing. MATERIALS AND METHODS: Between July 2020 and December 2022, after ruling out definitive obstructive azoospermia and non-obstructive azoospermia patients with testicular volume < 6 mL, 20 patients with non-obstructive azoospermia who underwent preoperative testicular diagnostic biopsy using testicular sperm aspiration were subjected to retrospective analysis. RESULTS: Microscopic examination identified four patients with sperm cells, and 16 without sperm cells. Routine pathological analysis classified one patient as normal spermatogenesis, three as hypospermatogenesis, five as maturation arrest, nine as Sertoli cell-only, and two as unable to judge. With chromosome-spreading technology using routine cell suspension samples for microscopic examination, 18 patient diagnoses were validated, and two patients without a definitive diagnosis were supplemented. Detection of the Y chromosome and a well-organized whole-exome sequencing analysis revealed potential genetic factors. DISCUSSION AND CONCLUSION: The full use of testicular biopsy is beneficial for the diagnosis of azoospermia, as it avoids the risk of multiple biopsies. Moreover, in combination with whole-exome sequencing, clinicians can obtain more information regarding the pathogenesis of non-obstructive azoospermia, which may guide treatment.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/genética , Azoospermia/terapia , Azoospermia/diagnóstico , Estudos Retrospectivos , Adulto , Sequenciamento do Exoma , Testículo/patologia , Biópsia , Recuperação Espermática , Espermatogênese/genética
3.
Metabolites ; 13(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887383

RESUMO

Ankylosing spondylitis (AS) is a type of chronic rheumatic immune disease, and the crucial point of AS treatment is identifying the correct stage of the disease. However, there is a lack of effective diagnostic methods for AS staging. The primary objective of this study was to perform an untargeted metabolomic approach in AS patients in an effort to reveal metabolic differences between patients in remission and acute stages. Serum samples from 40 controls and 57 AS patients were analyzed via gas chromatography-mass spectrometry (GC-MS). Twenty-four kinds of differential metabolites were identified between the healthy controls and AS patients, mainly involving valine/leucine/isoleucine biosynthesis and degradation, phenylalanine/tyrosine/tryptophan biosynthesis, glutathione metabolism, etc. Furthermore, the levels of fatty acids (linoleate, dodecanoate, hexadecanoate, and octadecanoate), amino acids (serine and pyroglutamate), 2-hydroxybutanoate, glucose, etc., were lower in patients in the acute stage than those in the remission stage, which may be associated with the aggravated inflammatory response and elevated oxidative stress in the acute stage. Multiple stage-specific metabolites were significantly correlated with inflammatory indicators (CRP and ESR). In addition, the combination of serum 2-hydroxybutanoate and hexadecanoate plays a significant role in the diagnosis of AS stages. These metabolomics-based findings provide new perspectives for AS staging, treatment, and pathogenesis studies.

4.
Front Med ; 17(4): 649-674, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37707677

RESUMO

Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.

5.
Environ Pollut ; 337: 122543, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716693

RESUMO

The toxicity of microplastics (MPs) to aquatic organisms has been extensively studied recently. However, few studies have investigated the effects of MPs in sediments on aquatic ecosystem functioning. In the present study, we conducted an in situ experiment to explore the concentration-dependent effects (0.025%, 0.25%, 2.5%) and size-dependent effects (150-300 µm and 500-1000 µm) of polypropylene microplastics (PP MPs) on Vallisneria natans litter decomposition dynamics, in particular, the process associated with macroinvertebrates, microorganisms, as well as microalgae and/or cyanobacteria. The results showed that exposure to high concentrations and large sizes of PP MPs can accelerate leaf litter biomass loss and nutrition release. Moreover, microbial respiration, microalgal and/or cyanobacteria chlorophyll-a were also significantly affected by PP MPs. However, PP MPs have no effect on the abundance of associated macroinvertebrate during the experiment, despite the collection of five macroinvertebrate taxa from two functional feeding groups (i.e., collectors and scrapers). Therefore, our experiment demonstrated that PP MPs may enhance leaf litter decomposition through effected microbial metabolic activity, microalgal and/or cyanobacteria biomass in the sedimentary lake. Overall, our findings highlight that PP MPs have the potential to interfere with the basic ecological functions such as plant litter decomposition in aquatic environments.


Assuntos
Microalgas , Poluentes Químicos da Água , Ecossistema , Microplásticos , Plásticos , Lagos , China , Poluentes Químicos da Água/toxicidade
6.
NPJ Precis Oncol ; 7(1): 97, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741941

RESUMO

Astrocytoma and glioblastoma (GB) are reclassified subtypes of adult diffuse gliomas based on distinct isocitrate dehydrogenase (IDH) mutation in the fifth edition of the WHO Classification of Tumors of the Central Nervous System. The recurrence of gliomas is a common and inevitable challenge, and analyzing the distinct genomic alterations in astrocytoma and GB could provide insights into their progression. This study conducted a longitudinal investigation, utilizing whole-exome sequencing, on 65 paired primary/recurrent gliomas. It examined chromosome arm aneuploidies, copy number variations (CNVs) of cancer-related genes and pathway enrichments during the relapse. The veracity of these findings was verified through the integration of our data with multiple public resources and by corroborative immunohistochemistry (IHC). The results revealed a greater prevalence of aneuploidy changes and acquired CNVs in recurrent lower grade astrocytoma than in relapsed grade 4 astrocytoma and GB. Larger aneuploidy changes were predictive of an unfavorable prognosis in lower grade astrocytoma (P < 0.05). Further, patients with acquired gains of 1q, 6p or loss of 13q at recurrence had a shorter overall survival in lower grade astrocytoma (P < 0.05); however, these prognostic effects were confined in grade 4 astrocytoma and GB. Moreover, acquired gains of 12 genes (including VEGFA) on 6p during relapse were associated with unfavorable prognosis for lower grade astrocytoma patients. Notably, elevated VEGFA expression during recurrence corresponded to poorer survival, validated through IHC and CGGA data. To summarize, these findings offer valuable insights into the progression of gliomas and have implications for guiding therapeutic approaches during recurrence.

7.
Metab Brain Dis ; 38(7): 2443-2456, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382831

RESUMO

Neuroinflammation is a critical feature in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). Hesperetin can exert anti-inflammatory, antioxidant and other neuroprotective effects. In this study, the scopolamine (SCOP)-induced cognitive dysfunction in mice model was used to evaluate the neuroprotective effects of hesperetin. Behavioral tests (Morris water maze, open field, and novel object recognition tests) were conducted to evaluate the effect of hesperetin on cognitive dysfunction behaviors. Nissl staining and Immunofluorescence were used to evaluate hippocampal neuronal damage and microglial activation in mice. The levels of proinflammatory factors, oxidant stress, and the cholinergic neurotransmitter were detected by real-time quantitative fluorescence PCR (RT-qPCR) or biochemical reagent kits. Western blotting was used to detect the relative protein expression of the sirtuin 6 (SIRT6) / NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. Results showed that hesperetin could ameliorate SCOP-induced cognitive impairment and neuronal damage, and regulate the levels of cholinergic neurotransmitters in the hippocampal of AD mice. Hesperetin could also enhance antioxidant defense by regulating the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). Hesperetin exerted anti-neuroinflammation effects through inhibiting of microglia activation and down-regulating the mRNA transcript levels of inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Meanwhile, hesperetin could attenuate the expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), thioredoxin-interacting protein (TXNIP), and caspase-1 p20 and upregulate the expression of SIRT6 in SCOP-induced mice. Overall, our study suggested that hesperetin might ameliorate SCOP-induced cognitive dysfunction by improving cholinergic system dysfunction and suppressing oxidative stress and attenuating neuroinflammation via SIRT6/NLRP3 pathway in mice.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Sirtuínas , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Antioxidantes , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Escopolamina , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
8.
Front Immunol ; 14: 1130308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006248

RESUMO

The human placenta is a unique temporary organ with a mysterious immune tolerance. The formation of trophoblast organoids has advanced the study of placental development. HLA-G is uniquely expressed in the extravillous trophoblast (EVT) and has been linked to placental disorders. With older experimental methodologies, the role of HLA-G in trophoblast function beyond immunomodulation is still contested, as is its role during trophoblast differentiation. Organoid models incorporating CRISPR/Cas9 technology were used to examine the role of HLA-G in trophoblast function and differentiation. JEG-3 trophoblast organoids (JEG-3-ORGs) were established that highly expressed trophoblast representative markers and had the capacity to differentiate into EVT. CRISPR/Cas9 based on HLA-G knockout (KO) significantly altered the trophoblast immunomodulatory effect on the cytotoxicity of natural killer cells, as well as the trophoblast regulatory effect on HUVEC angiogenesis, but had no effect on the proliferation and invasion of JEG-3 cells and the formation of TB-ORGs. RNA-sequencing analysis further demonstrated that JEG-3 KO cells followed similar biological pathways as their wild-type counterparts during the formation of TB-ORGs. In addition, neither HLA-G KO nor the exogenous addition of HLA-G protein during EVT differentiation from JEG-3-ORGs altered the temporal expression of the known EVT marker genes. Based on the JEG-3 KO (disruption of exons 2 and 3) cell line and the TB-ORGs model, it was determined that HLA-G has a negligible effect on trophoblast invasion and differentiation. Despite this, JEG-3-ORG remains a valuable model for studying trophoblast differentiation.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Linhagem Celular Tumoral , Organoides
9.
Cell Stem Cell ; 30(4): 378-395.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028404

RESUMO

Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Animais , Camundongos , Medula Óssea/metabolismo , Rejuvenescimento , Células-Tronco Hematopoéticas/metabolismo , Técnicas de Cocultura , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco
10.
Am J Reprod Immunol ; 90(1): e13708, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095737

RESUMO

PROBLEM: The phenotypes and functions of B and CD4+ T-helper cell subsets during chronic inflammation of the endometria remain largely unexplored. This study aimed to investigate the characteristics and functions of follicular helper T (Tfh) cells to understand the pathological mechanisms of chronic endometritis (CE). METHOD OF STUDY: Eighty patients who underwent hysteroscopic and histopathological examinations for CE were divided into three groups-those with positive results for hysteroscopy and CD138 staining (DP), negative results for hysteroscopy but positive CD138 staining (SP), and negative results for hysteroscopy and CD138 staining (DN). The phenotypes of B cells and CD4+ T-cell subsets were analyzed using flow cytometry. RESULTS: CD38+ and CD138+ cells were mainly expressed in the non-leukocyte population of the endometria, and the endometrial CD19+ CD138+ B cells were fewer than the CD3+ CD138+ T cells. The percentage of Tfh cells increased with chronic inflammation in the endometria. Additionally, the elevated percentage of Tfh cells correlated with the number of miscarriages. CONCLUSIONS: CD4+ T cells, particularly Tfh cells, may be critical in chronic endometrial inflammation and affect its microenvironment, thereby regulating endometrial receptivity, compared to B cells.


Assuntos
Resultado da Gravidez , Linfócitos T Auxiliares-Indutores , Humanos , Gravidez , Feminino , Linfócitos B , Endométrio , Inflamação
11.
Mol Cell Proteomics ; 22(4): 100526, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889440

RESUMO

Successful placentation requires delicate communication between the endometrium and trophoblasts. The invasion and integration of trophoblasts into the endometrium during early pregnancy are crucial to placentation. Dysregulation of these functions is associated with various pregnancy complications, such as miscarriage and preeclampsia. The endometrial microenvironment has an important influence on trophoblast cell functions. The precise effect of the endometrial gland secretome on trophoblast functions remains uncertain. We hypothesized that the hormonal environment regulates the miRNA profile and secretome of the human endometrial gland, which subsequently modulates trophoblast functions during early pregnancy. Human endometrial tissues were obtained from endometrial biopsies with written consent. Endometrial organoids were established in matrix gel under defined culture conditions. They were treated with hormones mimicking the environment of the proliferative phase (Estrogen, E2), secretory phase (E2+Progesterone, P4), and early pregnancy (E2+P4+Human Chorionic Gonadotropin, hCG). miRNA-seq was performed on the treated organoids. Organoid secretions were also collected for mass spectrometric analysis. The viability and invasion/migration of the trophoblasts after treatment with the organoid secretome were determined by cytotoxicity assay and transwell assay, respectively. Endometrial organoids with the ability to respond to sex steroid hormones were successfully developed from human endometrial glands. By establishing the first secretome profiles and miRNA atlas of these endometrial organoids to the hormonal changes followed by trophoblast functional assays, we demonstrated that sex steroid hormones modulate aquaporin (AQP)1/9 and S100A9 secretions through miR-3194 activation in endometrial epithelial cells, which in turn enhanced trophoblast migration and invasion during early pregnancy. By using a human endometrial organoid model, we demonstrated for the first time that the hormonal regulation of the endometrial gland secretome is crucial to regulating the functions of human trophoblasts during early pregnancy. The study provides the basis for understanding the regulation of early placental development in humans.


Assuntos
MicroRNAs , Trofoblastos , Feminino , Humanos , Gravidez , Endométrio/metabolismo , Hormônios Esteroides Gonadais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo , Placenta/metabolismo , Secretoma , Trofoblastos/metabolismo , Aquaporinas/metabolismo
12.
J Leukoc Biol ; 113(5): 434-444, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821782

RESUMO

Pregnancy involves a wide range of adaptations in the maternal body. Maternal immune tolerance toward the foreign fetus is critical for a successful pregnancy. Decidual macrophages are the primary antigen-presenting and phagocytic cells responsible for antigen presentation and apoptotic cell removal. Their phenotype changes dynamically during pregnancy. Placenta-derived exosomes are small vesicles carrying active biological molecules such as microRNAs, proteins, and lipids. The placenta-derived exosomes have been implicated in endothelial cell activation, smooth muscle cell migration, and T-cell apoptosis, but it is unknown whether placenta-derived exosomes would affect the development and functions of decidual macrophages. In this study, we reported that placenta-derived exosomes stimulated macrophage polarization into alternatively activated (M2) macrophages. Mechanistically, miRNA-30d-5p from the placenta-derived exosomes induced macrophage polarization to the M2 phenotype by targeting histone deacetylase 9. Furthermore, the conditioned medium of placenta-derived exosome-treated macrophages promoted trophoblast migration and invasion. By contrast, the conditioned medium impaired the ability of endothelial cell tube formation and migration. Placenta-derived exosome-treated macrophages had no impact on T-cell proliferation. Together, we demonstrated that placenta-derived exosomes polarize macrophages to acquire a decidua-like macrophage phenotype to modulate trophoblast and endothelial cell functions.


Assuntos
Exossomos , MicroRNAs , Gravidez , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Meios de Cultivo Condicionados , Macrófagos/metabolismo , Fagocitose , Movimento Celular , Exossomos/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras
13.
Proc Natl Acad Sci U S A ; 120(1): e2203779120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577075

RESUMO

Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones. Deletion of Igf1 from BMSCs by Lepr-Cre leads to decreased bone formation, impaired bone regeneration, and increased BM adipogenesis. Importantly, reduction of BMSC-derived IGF-1 contributes to fasting-induced marrow fat accumulation. In contrast, deletion of Igf1 from MKs/PLTs by Pf4-Cre leads to reduced bone formation and regeneration without affecting BM adipogenesis. To our surprise, MKs/PLTs are also an important source of systemic IGF-1. Platelet-rich plasma (PRP) from Pf4-Cre; Igf1f/fmice showed compromised osteogenic potential both in vivo and in vitro, suggesting that MK/PLT-derived IGF-1 underlies the therapeutic effects of PRP. Taken together, this study identifies BMSCs and MKs/PLTs as two important sources of IGF-1 that coordinate to maintain and regenerate the adult skeleton, highlighting reciprocal regulation between the hematopoietic and skeletal systems.


Assuntos
Medula Óssea , Fator de Crescimento Insulin-Like I , Camundongos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Diferenciação Celular , Plaquetas/metabolismo , Osteogênese/genética , Células da Medula Óssea/metabolismo , Esqueleto
14.
Am J Reprod Immunol ; 89(3): e13672, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36542433

RESUMO

PURPOSE: Implantation is a limiting factor for treatment success in assisted reproduction. Both embryonic and endometrial factors contribute to implantation. Embryonic factors have often been ignored in previous studies about the role of endometrium in implantation. In this study, we sought to identify the endometrial genes associated with negative pregnancy outcomes following the transfer of a single euploid blastocyst. METHODS: Computational analyses of the transcriptomes of mid-secretory endometria from nine pregnant and seven non-pregnant patients in a cycle preceding the transfer of a single euploid blastocyst in a vitrified-warmed cycle were performed. RESULTS: Principal component analysis of two reported endometrial receptivity gene sets showed close clustering of the pregnant and non-pregnant samples. Differential gene expression analysis and co-expression module analysis identified 131 genes associated with the pregnancy status. The endometrial signatures identified highlight the importance of immune and metabolic regulation in pregnancy outcome. Network analysis identified 20 hub genes that could predict pregnancy outcomes with 88.9% sensitivity and 85.7% specificity. Single-cell gene expression analysis highlighted the regulation of endometrial natural killer (NK) cells, T cells, and macrophages during embryo implantation. Immune cell abundance analysis supported the dysregulation of cytotoxic immune cells in the endometria of non-pregnant women. CONCLUSIONS: We reported the first endometrial gene signature associated with pregnancy after elimination of embryo aneuploidy and highlighted the importance of the endometrial immune microenvironment and metabolic status in pregnancy outcomes.


Assuntos
Fertilização in vitro , Transcriptoma , Feminino , Gravidez , Humanos , Transferência Embrionária , Implantação do Embrião/genética , Taxa de Gravidez , Endométrio/metabolismo , Blastocisto/metabolismo , Perfilação da Expressão Gênica , Fatores Imunológicos , Estudos Retrospectivos
15.
Pathol Oncol Res ; 28: 1610325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645619

RESUMO

Aims: Metastatic cervical carcinoma is hard to cure using traditional treatment and new therapeutic approaches are needed. However, the process of clonal evolution and the molecular alterations that contribute to tumor progression from primary to metastatic carcinoma remain unclear. It is currently difficult to distinguish between the primary pulmonary squamous cell carcinoma (PPSCC) and metastatic cervical squamous cell carcinoma (CSCC). Methods: Paired primary CSCC and lung/lymph nodes metastatic lesions from eight patients were analyzed by whole-exome sequencing (WES). WES data of matched specimens and normal samples were aligned to the human reference genome and analyzed to identify somatic mutations in primary and metastatic lesions. Results: A total of 1,254 somatic variants were identified. All the primary lesions and metastatic lesions shared mutations, the percentage of shared mutations between primary lesions and corresponding metastatic lesions varied significantly, ranging from 6% to 70%. In other words, all the metastatic lesions are clonally related to primary lesions, confirming WES could prove they are metastatic from the cervix but not PPSCC. We tried to apply a gene panel to help distinguish PPSCC and metastatic CSCC but failed because the mutations were widely distributed in CSCC. Interestingly, lymph nodes metastasis (LNM) harbored fewer cancer driver mutations than primary CSCC specimens with a significant difference. Besides this, there was no significant difference in somatic mutations and copy number variation (CNV) between primary and metastatic CSCC. Conclusion: Our data demonstrate that WES is an additional helpful tool in distinguishing PPSCC and metastatic CSCC, especially for certain difficult cases.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/patologia , Variações do Número de Cópias de DNA/genética , Sequenciamento do Exoma , Pulmão , Neoplasias Pulmonares/genética , Neoplasias do Colo do Útero/genética
16.
Cell Mol Life Sci ; 79(5): 279, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507203

RESUMO

Translational control is a fundamental mechanism regulating animal germ cell development. Gonadal somatic cells provide support and microenvironment for germ cell development to ensure fertility, yet the roles of translational control in gonadal somatic compartment remain largely undefined. We found that mouse homolog of conserved fly germline stem cell factor Pumilio, PUM1, is absent in oocytes of all growing follicles after the primordial follicle stage, instead, it is highly expressed in somatic compartments of ovaries. Global loss of Pum1, not oocyte-specific loss of Pum1, led to a significant reduction in follicular number and size as well as fertility. Whole-genome identification of PUM1 targets in ovarian somatic cells revealed an enrichment of cell proliferation pathway, including 48 key regulators of cell phase transition. Consistently granulosa cells proliferation is reduced and the protein expression of the PUM-bound Cell Cycle Regulators (PCCR) were altered accordingly in mutant ovaries, and specifically in granulosa cells. Increase in negative regulator expression and decrease in positive regulators in the mutant ovaries support a coordinated translational control of somatic cell cycle program via PUM proteins. Furthermore, postnatal knockdown, but not postnatal oocyte-specific loss, of Pum1 in Pum2 knockout mice reduced follicular growth and led to similar expression alteration of PCCR genes, supporting a critical role of PUM-mediated translational control in ovarian somatic cells for mammalian female fertility. Finally, expression of human PUM protein and its regulated cell cycle targets exhibited significant correlation with ovarian cancer and prognosis for cancer survival. Hence, PUMILIO-mediated cell cycle regulation represents an important mechanism in mammalian female reproduction and human cancer biology.


Assuntos
Neoplasias Ovarianas , Proteínas de Ligação a RNA , Animais , Ciclo Celular/genética , Feminino , Humanos , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Microambiente Tumoral
17.
EMBO J ; 41(4): e108415, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34957577

RESUMO

Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.


Assuntos
Osso e Ossos/citologia , Receptores para Leptina/metabolismo , Análise de Célula Única/métodos , Células-Tronco/fisiologia , Envelhecimento/fisiologia , Animais , Antígenos Ly/metabolismo , Diferenciação Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Feminino , Fraturas Ósseas , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rosiglitazona/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico
18.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613656

RESUMO

The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.


Assuntos
Implantação do Embrião , Células Endoteliais , Gravidez , Feminino , Animais , Camundongos , Implantação do Embrião/genética , Endométrio/metabolismo , Linfócitos , Células Estromais/metabolismo , RNA/metabolismo , Células Epiteliais
19.
J Biomed Res ; 35(5): 371-382, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531333

RESUMO

Posttranscriptional regulation of cancer gene expression programs plays a vital role in carcinogenesis; identifying the critical regulators of tumorigenesis and their molecular targets may provide novel strategies for cancer diagnosis and therapeutics. Highly conserved RNA-binding protein Pumilio-1 (PUM1) regulates mouse growth and cell proliferation, propelling us to examine its role in cancer. We found human PUM1 is highly expressed in a diverse group of cancer, including prostate cancer; enhanced PUM1 expression is also correlated with reduced survival among prostate cancer patients. Detailed expression analysis in twenty prostate cancer tissues showed enhanced expression of PUM1 at mRNA and protein levels. Knockdown of PUM1 reduced prostate cancer cell proliferation and colony formation, and subcutaneous injection of PUM1 knockdown cells led to reduced tumor size. Downregulation of PUM1 in prostate cancer cells consistently elevated cyclin-dependent kinase inhibitor 1B (CDKN1B) protein expression through increased translation but did not impact its mRNA level, while overexpression of PUM1 reduced CDKN1B protein level. Our finding established a critical role of PUM1 mediated translational control, particularly the PUM1-CDKN1B axis, in prostate cancer cell growth and tumorigenesis. We proposed that PUM1-CDKN1B regulatory axis may represent a novel mechanism for the loss of CDKN1B protein expression in diverse cancers and potential targets for therapeutics development.

20.
Stem Cell Res Ther ; 12(1): 306, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051872

RESUMO

BACKGROUND: Endometrial mesenchymal-like stromal/stem cells (eMSCs) have been proposed as adult stem cells contributing to endometrial regeneration. One set of perivascular markers (CD140b&CD146) has been widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative medicine and have long been studied, their cellular heterogeneity, relationship to primary counterpart, remains largely unclear. METHODS: In this study, we applied 10X genomics single-cell RNA sequencing (scRNA-seq) to cultured human CD140b+CD146+ endometrial perivascular cells (ePCs) from menstrual and secretory endometrium. We also analyzed publicly available scRNA-seq data of primary endometrium and performed transcriptome comparison between cultured ePCs and primary ePCs at single-cell level. RESULTS: Transcriptomic expression-based clustering revealed limited heterogeneity within cultured menstrual and secretory ePCs. A main subpopulation and a small stress-induced subpopulation were identified in secretory and menstrual ePCs. Cell identity analysis demonstrated the similar cellular composition in secretory and menstrual ePCs. Marker gene expression analysis showed that the main subpopulations identified from cultured secretory and menstrual ePCs simultaneously expressed genes marking mesenchymal stem cell (MSC), perivascular cell, smooth muscle cell, and stromal fibroblast. GO enrichment analysis revealed that genes upregulated in the main subpopulation enriched in actin filament organization, cellular division, etc., while genes upregulated in the small subpopulation enriched in extracellular matrix disassembly, stress response, etc. By comparing subpopulations of cultured ePCs to the publicly available primary endometrial cells, it was found that the main subpopulation identified from cultured ePCs was culture-unique which was unlike primary ePCs or primary endometrial stromal fibroblast cells. CONCLUSION: In summary, these data for the first time provides a single-cell atlas of the cultured human CD140b+CD146+ ePCs. The identification of culture-unique relatively homogenous cell population of CD140b+CD146+ ePCs underscores the importance of in vivo microenvironment in maintaining cellular identity.


Assuntos
Endométrio , Pericitos , Adulto , Antígeno CD146/genética , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA