Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 8: 101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326038

RESUMO

Ganoderic acid A (GAA), a representative active triterpenoid from Ganoderma lucidum, has been reported to exhibit antinociceptive, antioxidative, cytotoxic, hepatoprotective and anticancer activities. The present study aims (1) to identify GAA metabolites, in vivo by analyzing the bile, plasma and urine after intravenous administration to rats (20 mg/kg), and in vitro by incubating with rat liver microsomes (RLMs) and human liver microsomes (HLMs); (2) to investigate the metabolic kinetics of main GAA metabolites. Using HPLC-DAD-MS/MS techniques, a total of 37 metabolites were tentatively characterized from in vivo samples based on their fragmentation behaviors. The metabolites detected in in vitro samples were similar to those found in vivo. GAA underwent extensive phase I and II metabolism. The main metabolic soft spots of GAA were 3, 7, 11, 15, 23-carbonyl groups (or hydroxyl groups) and 12, 20, 28 (29)-carbon atoms. Ganoderic acid C2 (GAC2) and 7ß,15-dihydroxy-3,11,23-trioxo-lanost-26-oic acid were two main reduction metabolites of GAA, and their kinetics followed classical hyperbolic kinetics. The specific isoenzyme responsible for the biotransformation of the two metabolites in RLMs and HLMs was CYP3A. This is the first report on the comprehensive metabolism of GAA, as well as the metabolic kinetics of its main metabolites.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28346885

RESUMO

Ganoderic acid A (GAA), an active triterpenoid of the traditional Chinese herbal medicine Lingzhi, has been reported to exhibit antinociceptive, antioxidative, and anti-cancer activities. The present study aims to establish a sensitive and rapid UPLC-MS/MS method for studying the plasma and brain pharmacokinetics of GAA in rats. The analytes were separated on a C18 column eluted with a gradient mobile phase consisting of acetonitrile and 0.1% aqueous formic acid at 0.3mL/min. The eluate was monitored by a mass detector using an MRM (m/z, 515.3-285.1) model in negative electrospray ionization. The calibration curve showed good linearity (r2>0.99), with limits of detection and quantification of 0.25 and 2.00 nmol/L, respectively. The intra- and inter-day precision and accuracy were less than 9.99% and ranged from 97.45% to 114.62%, respectively. The extraction recovery from plasma was between 92.89% and 98.87%. GAA was found to be stable in treated samples at room temperature (22°C) for 12h and in plasma at -20°C for 7d. The developed method was successfully applied to a pharmacokinetic study of GAA in rats. GAA could be rapidly absorbed into the circulation (Tmax, 0.15h) and eliminated relatively slowly (t1/2, 2.46h) after orally dosing, and could also be detected in the brain lateral ventricle (Tmax, 0.25h and t1/2, 1.40h) after intravenously dosing. The absolute oral bioavailability and brain permeability of GAA were estimated to be 8.68% and 2.96%, respectively.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Ácidos Heptanoicos/sangue , Ácidos Heptanoicos/líquido cefalorraquidiano , Lanosterol/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Analgésicos/sangue , Analgésicos/líquido cefalorraquidiano , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/líquido cefalorraquidiano , Antioxidantes/farmacocinética , Lanosterol/sangue , Lanosterol/líquido cefalorraquidiano , Limite de Detecção , Masculino , Microdiálise/métodos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA