Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 12(10): 11624-11640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999945

RESUMO

BACKGROUND: Mitogen-activated protein kinase 4 (MAPK4) is an atypical member of the mitogen-activated protein kinase (MAPK) family. We report here that MAPK4 is overexpressed in glioma. The clinical significance, biological roles and underlying molecular mechanisms through which MAPK4 acts in glioma remain unclear. METHODS: Analysis of MAPK4 expression and associated survival in glioma patients was performed based on data obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases and confirmed in human glioma tissue by immunohistochemistry. MAPK4 function and pathway enrichment were analyzed through Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO). The viability and migration ability of MAPK4-silenced glioblastoma multiforme (GBM) cells were evaluated using CCK8 and transwell assays, respectively, and cell cycle and apoptosis analyses were performed using flow cytometry. Immunoblotting was used to analyze the protein level in MAPK4 knockdown glioma cells. We also analyzed the correlation of MAPK4 expression with immune infiltration and immune checkpoints in glioma. RESULTS: MAPK4 was overexpressed in IDH wild-type (wt) and 1p/19q non-codeletion gliomas. MAPK4 expression predicted poor prognosis of glioma patients. MAPK4 was significantly related to functional states, including stemness, metastasis, cell cycle, differentiation and proliferation, in glioma at single-cell resolution. MAPK4 silencing inhibited proliferation and migration and induced G1 cell cycle arrest in glioma cells via the AKT/mTOR pathway. In vivo, MAPK4 knockdown markedly suppressed the growth of primary glioma. In addition, MAPK4 expression correlated negatively with the infiltration of plasmacytoid DC cells, CD8+ T cells and T helper cells. Moreover, MAPK4 expression correlated positively with expression of the main immunoinhibitor checkpoint molecules and some chemokines in glioma. CONCLUSION: MAPK4 functions as a prognostic indicator in glioma and promotes the proliferation and migration of GBM cells through the AKT/mTOR pathway. MAPK4 may participate in immune infiltration and the expression of immune checkpoints in the glioma microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/genética , Glioma/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Prognóstico , Neoplasias Encefálicas/patologia , Microambiente Tumoral
2.
Cancer Sci ; 113(2): 500-516, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34812552

RESUMO

P53 and DNA damage-regulated gene1 (PDRG1) is overexpressed in diverse carcinomas. Here, we discover that PDRG1 is overexpressed in glioblastoma multiforme (GBM). However, the clinical significance, biological role, and underlying molecular mechanisms of PDRG1 in GBM remain unclear. PDRG1 was aberrantly overexpressed in glioma, especially prevalent in GBM, and correlated with poor clinicopathologic features of glioma. The risk score, operational feature curve analysis, Kaplan-Meier curve, and univariate and multivariate Cox regression analysis indicated that PDRG1 was an independent prognostic indicator and significantly correlates with disease progression of glioma. A prognostic nomogram was constructed to predict the survival risk of individual patients. The function and pathway enrichment analysis of PDRG1 in The Cancer Genome Atlas cohort was performed. PDRG1 knockdown significantly inhibited the migration and proliferation of GBM cells in vitro and in vivo. Transcriptome sequencing analysis of PDRG1 knockdown U-118 MG(U118) cells indicated that biological regulation adhesion, growth and death, cell motility, cell adhesion molecular and proteoglycans in cancer were significantly enriched. Importantly, we found that the expression of adhesion molecule cluster of differentiation 44 (CD44) was regulated by PDRG1 in GBM. We found that PDRG1 promoted the migration and proliferation of GBM cells via the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinase (ERK)/CD44 pathway. Our findings provide proof that PDRG1 upregulation predicts progression and poor prognosis in human gliomas, especially in isocitrate dehydrogenase (IDH) wt glioma patients. The study provides new evidence that PDRG1 regulates the expression of CD44 in GBM cells and might promote the migration and proliferation via the MEK/ERK/CD44pathway. PDRG1 might be a novel diagnostic indicator and promising therapeutic target for GBM.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Receptores de Hialuronatos/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais
3.
Front Oncol ; 11: 793025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938665

RESUMO

Glioma is the most common primary brain tumor that causes significant morbidity and mortality. MAPK activated protein kinase 3 (MAPKAPK3/MK3) is a serine/threonine protein kinase regulating various cellular responses and gene expression. However, the role of MK3 in tumor progress, prognosis, and immunity for glioma remains unclear. Here, we determined the expression and prognostic values of MK3. We further analyzed the correlation of MK3 expression with immune infiltrations by using the biochemical methods and bioinformatic approaches with available databases. We find that MK3 is aberrantly upregulated in glioma. In addition, the higher MK3 expression is closely linked to the poor clinicopathologic features of glioma patients. Importantly, MK3 expression is negatively correlated with the prognosis of patients with glioma. Mechanistically, we demonstrated that the correlated genes of MK3 were mainly enriched in pathways that regulate tumor immune responses. The MK3 level was significantly associated with tumor-infiltrating immune cells and positively correlated with the majority of tumor immunoinhibitors, chemokines, and chemokine receptors in glioma. Thus, these findings suggest the novel prognostic roles of MK3 and define MK3 as a promising target for glioma immunotherapy.

4.
Front Plant Sci ; 12: 710093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408765

RESUMO

Deficiency of certain elements can cause leaf chlorosis in Areca catechu L. trees, which causes considerable production loss. The linkage between nutrient deficiency and chlorosis phenomenon and physiological defect in A. catechu remains unclear. Here, we found that low iron supply is a determinant for chlorosis of A. catechu seedling, and excessive iron supply resulted in dark green leaves. We also observed morphological characters of A. catechu seedlings under different iron levels and compared their fresh weight, chlorophyll contents, chloroplast structures and photosynthetic activities. Results showed that iron deficiency directly caused chloroplast degeneration and reduced chlorophyll synthesis in chlorosis leaves, while excessive iron treatment can increase chlorophyll contents, chloroplasts sizes, and inflated starch granules. However, both excessive and deficient of iron decreases fresh weight and photosynthetic rate in A. catechu seedlings. Therefore, we applied transcriptomic and metabolomic approaches to understand the effect of different iron supply to A. catechu seedlings. The genes involved in nitrogen assimilation pathway, such as NR (nitrate reductase) and GOGAT (glutamate synthase), were significantly down-regulated under both iron deficiency and excessive iron. Moreover, the accumulation of organic acids and flavonoids indicated a potential way for A. catechu to endure iron deficiency. On the other hand, the up-regulation of POD-related genes was assumed to be a defense strategy against the excessive iron toxicity. Our data demonstrated that A. catechu is an iron-sensitive species, therefore the precise control of iron level is believed to be the key point for A. catechu cultivation.

5.
FEBS Open Bio ; 11(4): 1250-1258, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660927

RESUMO

C/EBPß is a member of the CCAAT/enhancer-binding protein (C/EBP) family, which consists of a number of b-ZIP transcription factors. Although C/EBPß has been implicated in the development of certain cancers, including breast cancer, it remains unknown whether dysregulation of C/EBPß in breast cancer is subtype-specific. Moreover, the underlying mechanisms by which C/EBPß regulates breast cancer carcinogenesis are not fully understood. Here, we present evidence that C/EBPß is specifically overexpressed in human TNBC samples, but not in non-TNBC samples. C/EBPß depletion dramatically suppressed TNBC cell growth, migration, invasion, and colony formation ability. A subsequent mechanistic study revealed that the JAK/STAT signaling pathway was upregulated in C/EBPß_high TNBC samples compared with C/EBPß_low TNBC samples. C/EBPß ChIP-seq and qPCR were performed to demonstrate that C/EBPß directly binds to and regulates JAK/STAT signaling pathway genes in TNBC. Taken together, our data indicate the oncogenic role of C/EBPß in human TNBC and reveal a novel mechanism by which C/EBPß promotes TNBC carcinogenesis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/patologia
6.
Front Mol Biosci ; 8: 779290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004849

RESUMO

MAP3K8 is a serine/threonine kinase that is widely expressed in immune cells, non-immune cells, and many tumor types. The expression, clinical significance, biological role, and the underlying molecular mechanisms of MAP3K8 in glioma have not been investigated yet. Here, we discovered that MAP3K8 was aberrantly overexpressed in glioma and correlated with poor clinicopathological features of glioma by analysis on different datasets and immunohistochemistry staining. MAP3K8 is an independent prognostic indicator and significantly correlates with the progression of glioma. We also performed the function and pathway enrichment analysis of MAP3K8 in glioma to explore its biological functions and underlying molecular mechanisms in glioma. MAP3K8 co-expressed genes were mainly enriched in immune-related biological processes such as neutrophil activation, leukocyte migration, neutrophil-mediated immunity, lymphocyte-mediated immunity, T-cell activation, leukocyte cell-cell adhesion, regulation of leukocyte cell-cell adhesion, B-cell-mediated immunity, myeloid cell differentiation, and regulation of cell-cell adhesion. Single-cell RNA sequencing data and immunohistochemistry analysis demonstrated that MAP3K8 is expressed in malignant and immune cells and mainly enriched in the microglia/macrophage cells of glioma. The expression of MAP3K8 was positively correlated with immune infiltration, including effector memory CD4+ T cells, plasmacytoid dendritic cells, neutrophils, myeloid dendritic cells, mast cells, and macrophage in glioma. Further correlation analysis demonstrated that a series of inhibitory immune checkpoint molecules, chemokines, and chemokine receptors was positively correlated with the expression of MAP3K8. MAP3K8 might play an essential role in tumor immunity, and inhibition of MPA3K8 is a plausible strategy for glioma immunotherapy.

7.
Clin Epigenetics ; 12(1): 31, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070428

RESUMO

BACKGROUNDS: The NuRD (Nucleosome Remodeling and Deacetylation) complex is a repressive complex in gene transcription by modulating chromatin accessibility of target genes to transcription factors and RNA polymerase II. Although individual subunits of the complex have been implicated in many other cancer types, the complex's role in human hepatocellular carcinoma (HCC) is not fully understood. More importantly, the NuRD complex has not yet been investigated as a whole in cancers. METHODS: We analyzed the expression of the NuRD complex in HCC and evaluated the prognostic value of NuRD complex expression in HCC using the RNA-seq data obtained from the TCGA project. We examined the effect of CHD4 knockdown on HCC cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition, colony-forming ability, and on complement gene expression. We also performed bioinformatic analyses to investigate the correlation between the NuRD complex expression and immune infiltration. RESULTS: We found that nine subunits, out of 14 subunits of the NuRD complex examined, were significantly overexpressed in HCC, and their expression levels were positively correlated with cancer progression. More importantly, our data also demonstrated that these subunits tended to be overexpressed as a whole in HCC. Subsequent studies demonstrated that knockdown of CHD4 in HCC cells inhibits cell proliferation, migration, invasion, and colony-forming ability and promotes apoptosis of HCC cells, indicating that the CHD4/NuRD complex plays oncogenic roles in HCC. Further analysis revealed that the CHD4/NuRD complex regulates complement gene expression in HCC. Intriguingly, we found that the CHD4/NuRD complex expression was inversely correlated with CD8 T cell infiltration in HCC. CONCLUSIONS: Our data demonstrate that the CHD4/NuRD complex plays an oncogenic role in human HCC and regulates complement gene expression in HCC cells. The results of inverse correlation between the CHD4/NuRD complex and CD8 T cell and DC cell infiltration in HCC suggest that the CHD4/NuRD complex not only plays direct regulatory roles in HCC cells, but also has an impact on the immune microenvironment of HCC.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Apoptose , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/farmacologia , Prognóstico , Células-Tronco/efeitos dos fármacos
8.
Life Sci ; 228: 128-134, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054270

RESUMO

AIMS: Forkhead box (FOX) proteins constitute a huge family of transcriptional regulators, which are involved in a wide range of cancers. FOXK1 is a little studied member of FOXK subfamily. This study aimed to investigate the potential prognostic value of FOXK1 in human hepatocellular carcinoma (HCC) and explore potential underlying mechanisms. MAIN METHODS: We performed bioinformatic analyses to evaluate the prognostic value of FOXK1 expression in human HCC and to reveal the underlying mechanism by which FOXK1 regulates HCC. RT-PCR, FACS analysis and sphere formation assay were carried out to investigate the role of FOXK1 in regulating liver cancer stem cells. KEY FINDINGS: Our results demonstrated that FOXK1 was overexpressed in human HCC and positively correlated with cancer progression. DNA hypomethylation and gene copy number variation contributed to the overexpression of FOXK1. Importantly, high FOXK1 expression was associated with both low overall survival probability (OS) and low relapse free survival probability (RFS) of HCC patients. Intriguingly, we found that high FOXK1 expression was correlated with activation of stem cell-regulating pathways in human HCC. Knockdown of FOXK1 resulted in downregulation of the cancer stem cell marker EpCAM and ALDH1 and decreased sphere-forming ability of hepatocellular carcinoma cells. SIGNIFICANCE: Overall, our study identified FOXK1 as a new biomarker for prognosis of HCC patients and revealed its role in regulating stemness of hepatocellular carcinoma cells.


Assuntos
Carcinoma Hepatocelular/genética , Fatores de Transcrição Forkhead/genética , Neoplasias Hepáticas/genética , Regulação para Cima , Adulto , Idoso , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Metilação de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA