Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(6): e31273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666419

RESUMO

Glutathione peroxisomal-5 (Gpx5) promotes the elimination of H2O2 or organic hydrogen peroxide, and plays an important role in the physiological process of resistance to oxidative stress (OS). To directly and better understand the protection of Gpx5 against OS in epididymal cells and sperm, we studied its mechanism of antioxidant protection from multiple aspects. To more directly investigate the role of Gpx5 in combating oxidative damage, we started with epididymal tissue morphology and Gpx5 expression profiles in combination with the mouse epididymal epithelial cell line PC1 (proximal caput 1) expressing recombinant Gpx5. The Gpx5 is highly expressed in adult male epididymal caput, and its protein signal can be detected in the sperm of the whole epididymis. Gpx5 has been shown to alleviate OS damage induced by 3-Nitropropionic Acid (3-NPA), including enhancing antioxidant activity, reducing mitochondrial damage, and suppressing cell apoptosis. Gpx5 reduces OS damage in PC1 and maintains the well-functioning extracellular vesicles (EVs) secreted by PC1, and the additional epididymal EVs play a role in the response of sperm to OS damage, including reducing plasma membrane oxidation and death, and increasing sperm motility and sperm-egg binding ability. Our study suggests that GPX5 plays an important role as an antioxidant in the antioxidant processes of epididymal cells and sperm, including plasma membrane oxidation, mitochondrial oxidation, apoptosis, sperm motility, and sperm-egg binding ability.


Assuntos
Antioxidantes , Epididimo , Vesículas Extracelulares , Glutationa Peroxidase , Estresse Oxidativo , Espermatozoides , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Epididimo/metabolismo , Epididimo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Nitrocompostos , Estresse Oxidativo/efeitos dos fármacos , Propionatos/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Envelhecimento , Metabolismo dos Lipídeos
2.
Theriogenology ; 219: 147-156, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430799

RESUMO

The supplementation of sperm culture media with serum is quite common, and improves both sperm survival and motility. However, the link between serum and sperm remains poorly understood. The present study is the first investigation of the effects on sperm quality and function of endogenous porcine serum exosomes in medium used for culturing boar sperm. Scanning electron microscopy (SEM) confirmed that serum-derived exosomes from both castrated boars (cbsExos) and sows (ssExos) exhibited typical nanostructural morphology and expressed CD63, CD9, and Alix, as shown by Western blotting. At 17 °C, the progressive motility and membrane integrity of sperm were significantly increased after incubation of fresh boar semen for 7 days with cbsExos-4 (8 × 1010 particles/mL) or ssExos-16 (32 × 1010 particles/mL). Moreover, cbsExos-4 and ssExos-16 were found to be effective sperm additives, improving mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) content, total antioxidant activity (T-AOC), superoxide dismutase (SOD) activity, and glutathione peroxidase (GPx) activity while reducing reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content following preservation at 17 °C after a 5-day incubation. Both fluorescence and SEM showed that the serum exosomes bound directly to the sperm membrane, suggesting an interaction that could influence sperm-zona pellucida binding. Overall, this study provides new insights into the potential benefits of adding cbsExos and ssExos to enhance the quality of boar sperm during ambient temperature preservation, which may lead to advancements in sperm preservation strategies.


Assuntos
Exossomos , Preservação do Sêmen , Suínos , Animais , Masculino , Feminino , Sêmen/metabolismo , Exossomos/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária , Antioxidantes/metabolismo
3.
Biol Trace Elem Res ; 202(1): 99-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37155084

RESUMO

Current immunotherapy for prostate cancer is still in the stage of clinical trials. This delay is thought to be caused by an unclear regulatory mechanism of the immune microenvironment, which makes it impossible to distinguish patients suitable for immunotherapy. Cuprotosis may be related to the heterogeneity of immune microenvironment, which was regarded as a new copper-dependent cell death mode, was proposed, and gain attention. We explored for the first time the relationship between cuprotosis and the immune microenvironment of prostate cancer and constructed cuprotosis score. RNA sequencing data sets for prostate cancer were downloaded from public databases. Consensus clustering was applied to distinguish cuprotosis phenotype based on the expression of cuproptosis-related genes (CRGs) identified as prognostic factors. Genomic phenotypes of CRG clusters were depicted via consensus clustering. Cuprotosis score was established on the basis of differentially expressed genes (DEGs) identified as prognostic factors via principal component analysis. Cuprotosis score = the first principal component of prognostic factors + the second principal component of prognostic factors. The value of cuproptosis score in predicting prognosis and immunotherapy response was evaluated. PDHA1 (HR = 3.86, P < 0.001) and GLS (HR = 1.75, P = 0.018) were risk factors for prognosis of prostate cancer patients, while DBT (HR = 0.66, P = 0.048) was a favorable factor for prognosis of prostate cancer patients. CRG clusters had different prognosis and immune cell infiltration. So as gene clusters. Prostate cancer patients with low cuprotosis score showed better prognosis for biochemical relapse-free survival. Cuprotosis score is accompanied with high immune score and Gleason score. As cuprotosis genes, PDHA1, GLS, and DBT were identified as independent prognostic factors of prostate cancer. Cuprotosis score was established via principal component analysis of PDHA1, GLS, and DBT, which can be used as a predictor of prognosis and immunotherapy response of prostate cancer patients, and can characterize immune cells infiltration in tumors. Cuproptosis was involved in the regulation of immune microenvironment, which may depend on the effect of tricarboxylic acid cycle. Our study provided clues to reveal the relationship between copper death and immune microenvironment, highlighted the clinical significance of cuproptosis, and provided a reference for the development of personalized immunotherapy.


Assuntos
Cobre , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Morte Celular , Análise por Conglomerados , Bases de Dados Factuais , Apoptose , Microambiente Tumoral/genética
4.
Chem Pharm Bull (Tokyo) ; 71(2): 120-128, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436947

RESUMO

Mechanistic target of rapamycin (mTOR) is an effective anti-tumor drug target. Several mTOR kinase inhibitors have entered clinical research, but there are still challenges of potential toxicity. As a new type of targeted drug, proteolysis targeting chimeras (PROTACs) have features of low dosage and low toxicity. However, this approach has been rarely reported to involve mTOR degradation. In this study, the mTOR kinase inhibitor MLN0128 was used as the ligand to the protein of interest and conjugated with pomalidomide by diverse intermediate linkage chains. Several potential small molecule PROTACs for the degradation of mTOR were designed and synthesized. PROTAC compounds exhibited mTOR inhibitory activity and suppressed MCF-7 cell proliferation. The representative compound P1 could inhibit the expression of mTOR downstream proteins and the growth of cancer cells by inducing autophagy but not affecting the cell cycle and not inducing apoptosis.


Assuntos
Inibidores de Proteínas Quinases , Sirolimo , Humanos , Sirolimo/farmacologia , Proteólise , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo
5.
Prostate ; 82(4): 464-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037281

RESUMO

OBJECTIVES: This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS: All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS: Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION: The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.


Assuntos
Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Reparo do DNA/genética , Compostos de Platina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Idoso , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carboplatina/uso terapêutico , Carcinoma Neuroendócrino/patologia , Cisplatino/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
6.
Anim Biotechnol ; 33(2): 321-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32730101

RESUMO

Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Cabras/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
7.
Anim Reprod Sci ; 229: 106750, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940561

RESUMO

The TG interaction factor 1 (TGIF1) is of the TALE homologue domain protein family and is considered as a transcriptional repressor of SMAD protein that interacts with DNA through a specific consensus-binding site for TG and recruits mSin3A and histone deacetylases to the SMAD complex. In this study, there is the first detailed description of TGIF1 on steroidogenesis in goat granulosa cells. When there is a relatively greater expression of the TGIF1 gene, there is a lesser abundance of CYP11A1, CYP19A1, and StAR mRNA transcript and protein and 3ß-HSD mRNA transcript in granulosa cells of goats. Furthermore, there were lesser concentrations of 17ß-estradiol (E2) and progesterone (P4) in culture medium when there was greater TGIF1 gene expression and there were greater concentrations of these hormones in the culture medium when there was lesser TGIF1 gene expression. There may be functions of TGIF1, therefore, in suppression of SMAD-induced E2 and P4 production and in decreasing the phosphorylation of SMAD2/3 in granulosa cells of goats and relative abundance of the SMAD2/3 protein transcription factor, SP1. With suppression of TGIF1 gene expression, there was a reversal of SP1-induced suppression of steroidogenesis-related genes. Results of the present study provide insights about the potential mechanism underlying the regulation of granulosa cell steroidogenesis of goats by TGIF1.


Assuntos
Cabras/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Células Cultivadas , Estradiol/biossíntese , Feminino , Regulação da Expressão Gênica , Células da Granulosa/fisiologia , Proteínas de Homeodomínio/genética , Progesterona/biossíntese , Proteínas Repressoras/genética , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Transcrição Sp1/genética
8.
Reproduction ; 161(2): 159-172, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434156

RESUMO

Epididymal specific proteins play a crucial role in sperm maturation. Some of the post-translational modified proteins are transported from the caput to the cauda of the epididymis through exosomes which regulate the function of sperm in cauda epididymis. Rat beta-galactosidase-1-like protein 4 (GLB1L4) expressed specifically in the caput epididymis, localizes on the sperm; however, the regulatory ways in which GLB1L4 protein interacts with sperm to maintain sperm function are unclear. In this study, knockdown of rat GLB1L4 could inhibit in vitro capacitation of sperm in cauda epididymis and reduce the fertility of the male rats by injection of special lentivirus-shRNA into caput epididymis. Moreover, a considerable proportion of GLB1L4 proteins from rat caput epididymis were loaded on exosomes. The exosomes loaded GLB1L4 from in vitro primary rat caput epididymal epithelial cells could bind with spermatozoa in cauda epididymis. Further, the palmitoylation status of cysteine residues at the 12th and 15th sites of the protein molecule could significantly affect cellular localization of GLB1L4 protein. It was identified that most of GLB1L4 was palmitoylated in the presence of exosomes from primary caput epididymal cells and the level of palmitoylated GLB1L4 in the exosomes could be inhibited by 2-bromopalmitate (2-BP). These results suggested that the palmitoylated GLB1L4 from rat caput epididymis could be transported to the cauda epididymis to regulate the sperm function by exosomes.


Assuntos
Epididimo , Exossomos , Animais , Masculino , Proteínas , Ratos , Maturação do Esperma , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA