Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biomed Pharmacother ; 176: 116919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876053

RESUMO

Albumin has a variety of biological functions, such as immunomodulatory and antioxidant activity, which depends largely on its thiol activity. However, in clinical trials, the treatment of albumin by injection of commercial human serum albumin (HSA) did not achieve the desired results. Here, we constructed reduced modified albumin (SH-Alb) for in vivo and in vitro experiments to investigate the reasons why HSA did not achieve the expected effects. SH-Alb was found to delay the progression of liver fibrosis in mice by alleviating liver inflammation and oxidative stress. Although R-Alb also has some of the above roles, the effect of SH-Alb is more remarkable. Mechanism studies have shown that SH-Alb reduces the release of pro-inflammatory and pro-fibrotic cytokine through the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, SH-Alb deacetylates SOD2, a key enzyme of mitochondrial reactive oxygen species (ROS) production, by promoting the expression of SIRT3, thereby reducing the accumulation of ROS. Finally, macrophages altered by R-Alb or SH-Alb can inhibit the activation of hepatic stellate cells and endothelial cells, further delaying the progression of liver fibrosis. These results indicate that SH-Alb can remodel the phenotype of macrophages, thereby affecting the intrahepatic microenvironment and delaying the process of liver fibrosis. It provides a good foundation for the application of albumin in clinical treatment.


Assuntos
Cirrose Hepática , Macrófagos , Sirtuína 3 , Superóxido Dismutase , Animais , Humanos , Masculino , Camundongos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo
2.
Cell Death Differ ; 31(1): 90-105, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062244

RESUMO

Mesenchymal stromal cells (MSCs) are used to treat infectious and immune diseases and disorders; however, its mechanism(s) remain incompletely defined. Here we find that bone marrow stromal cells (BMSCs) lacking Pinch1/2 proteins display dramatically reduced ability to suppress lipopolysaccharide (LPS)-induced acute lung injury and dextran sulfate sodium (DSS)-induced inflammatory bowel disease in mice. Prx1-Cre; Pinch1f/f; Pinch2-/- transgenic mice have severe defects in both immune and hematopoietic functions, resulting in premature death, which can be restored by intravenous injection of wild-type BMSCs. Single cell sequencing analyses reveal dramatic alterations in subpopulations of the BMSCs in Pinch mutant mice. Pinch loss in Prx1+ cells blocks differentiation and maturation of hematopoietic cells in the bone marrow and increases production of pro-inflammatory cytokines TNF-α and IL-1ß in monocytes. We find that Pinch is critical for expression of Cxcl12 in BMSCs; reduced production of Cxcl12 protein from Pinch-deficient BMSCs reduces expression of the Mbl2 complement in hepatocytes, thus impairing the innate immunity and thereby contributing to infection and death. Administration of recombinant Mbl2 protein restores the lethality induced by Pinch loss in mice. Collectively, we demonstrate that the novel Pinch-Cxcl12-Mbl2 signaling pathway promotes the interactions between bone and liver to modulate immunity and hematopoiesis and may provide a useful therapeutic target for immune and infectious diseases.


Assuntos
Osso e Ossos , Citocinas , Fígado , Animais , Camundongos , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Células da Medula Óssea , Citocinas/metabolismo , Fígado/imunologia , Fígado/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Quimiocina CXCL12/metabolismo , Proteínas com Domínio LIM/metabolismo , Lectina de Ligação a Manose/metabolismo , Hematopoese
3.
BMC Infect Dis ; 23(1): 722, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880617

RESUMO

BACKGROUND: Mycobacterium houstonense is a category of rapidly growing mycobacteria that is gram-positive, acid-fast, polycrystalline, and non-spore-forming. There have been few reports of human infection caused by Mycobacterium houstonense worldwide. CASE PRESENTATION: We present a case of chronic periprosthetic joint infection caused by Mycobacterium houstonense in an elderly female patient. The patient developed signs of infection after undergoing total hip arthroplasty. Despite receiving antibiotic treatment and revision surgery, the signs of infection recurred repeatedly. Multiple bacterial cultures during the treatment period were negative. Later, we identified the pathogenic bacteria Mycobacterium houstonense through mNGS testing, isolated the bacteria from the ultrasonically centrifuged fluid of the prosthesis and obtained drug sensitivity results. Finally, we performed a revision surgery and treated the patient with moxifloxacin and clindamycin. After treatment, the patient did not show signs of infection recurrence during 24 months of follow-up. CONCLUSION: Through a relevant literature search, we believe that Mycobacterium houstonense may show higher sensitivity to amikacin and quinolone antibiotics. Additionally, clarifying occult infection sources through methods such as gene testing will improve the diagnosis and treatment of periprosthetic joint infection.


Assuntos
Artroplastia de Quadril , Mycobacteriaceae , Infecções por Mycobacterium , Infecções Relacionadas à Prótese , Idoso , Feminino , Humanos , Antibacterianos/uso terapêutico , Artroplastia de Quadril/efeitos adversos , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/complicações , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/etiologia , Reoperação
4.
Acta Pharm Sin B ; 13(10): 3963-3987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799379

RESUMO

The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.

5.
Prog Biophys Mol Biol ; 185: 1-16, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793504

RESUMO

The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.


Assuntos
Neoplasias da Mama , Mecanotransdução Celular , Humanos , Feminino , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Transdução de Sinais , Fenômenos Biomecânicos , Microambiente Tumoral
6.
Cell Mol Life Sci ; 80(8): 223, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480504

RESUMO

Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.


Assuntos
Retinopatia Diabética , Humanos , Fenômenos Fisiológicos Cardiovasculares , Células Endoteliais , Morfogênese , Fator A de Crescimento do Endotélio Vascular/genética
7.
Mol Cancer ; 22(1): 87, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226188

RESUMO

The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Sequência de Aminoácidos , Glicina , Oligopeptídeos
8.
Immun Inflamm Dis ; 11(5): e849, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249293

RESUMO

BACKGROUND: The present study was conducted to determine the inflammatory response in the lungs of children with Mycoplasma pneumoniae pneumonia (MPP). METHODS: This study retrospectively analyzed cytokine levels, cytological findings, and M. pneumoniae (MP)-DNA level in the bronchoalveolar lavage fluid (BALF) of 96 children with MPP. The study utilized Spearman's correlation method to evaluate the contribution of BALF and blood parameters in MPP children. RESULTS: (1) A total of 96 MPP children were classified into the Low MP-DNA MPP group (BALF MP-DNA ≤ 105 copies/mL) and the High MP-DNA MPP group (BALF MP-DNA > 105 copies/mL); the Non-fever MPP group (no fever during the entire course of pneumonia) and the Fever MPP group; the Defervescence MPP group (fever had subsided at the time of bronchoscopy) and the Fervescence MPP group; and the Mild MPP group and the Severe MPP group. (2) The High MP-DNA MPP, Fever MPP, Fervescence MPP, and Severe MPP groups had higher levels of interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) in their BALF (all p < .05). (3) The proportions of neutrophils and macrophages in the BALF of the High MP-DNA MPP and Fever MPP groups increased and decreased, respectively (all p < .05). (4) In the BALF of MPP children, MP-DNA, IL-6, IL-10, TNF-α, and interferon gamma (IFN-γ) levels positively correlated with neutrophil proportion while negatively correlated with macrophage proportion (all p < .05). (5) The MP-DNA, IL-6, IL-10, TNF-α, and IFN-γ levels in the BALF of MPP children were positively correlated with the levels of C-reactive protein, procalcitonin, lactic dehydrogenase, fibrinogen, and d-dimer, while they were negatively correlated with the albumin level (all p < .05). CONCLUSIONS: In children with MPP, the pulmonary inflammatory immune response was stronger in the High MP-DNA MPP, Fever MPP, Fervescence MPP, and Severe MPP groups. The relationship between pulmonary cytokine levels, MP-DNA load, and serum inflammatory parameters were found to be weak.


Assuntos
Mycoplasma pneumoniae , Pneumonia por Mycoplasma , Humanos , Criança , Mycoplasma pneumoniae/genética , Citocinas , Interleucina-10 , Líquido da Lavagem Broncoalveolar , Interleucina-6/análise , Fator de Necrose Tumoral alfa , Estudos Retrospectivos , DNA , Interferon gama
9.
Ultrasound Med Biol ; 49(5): 1037-1048, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746743

RESUMO

The purpose of this meta-analysis was to evaluate the diagnostic performance of shear wave elastography (SWE) for the staging of renal fibrosis in patients with chronic kidney disease (CKD). Classification of CKD into mild, moderate and severe fibrosis was based on renal biopsy pathology (glomerulosclerosis, tubulointerstitial injury and vascular sclerosis). The Cochrane Library, Medline, PubMed, Web of Science, EMBASE and CNKI databases were searched from January 1, 2009, to April 20, 2022. Pooled sensitivity, specificity, diagnostic odds ratio and area under the receiver operating characteristic curve (AUROC) were calculated using random effects models. A total of 1394 patients from 14 studies were included in the final analysis. For mild, moderate and severe renal fibrosis, SWE had a sensitivity of 0.79 (95% confidence interval [CI]: 0.67-0.88), 0.73 (95% CI: 0.65-0.80) and 0.87 (95% CI: 0.71-0.95); a specificity of 0.82 (95% CI: 0.75-0.87), 72% (95% CI: 0.67-0.77) and 0.83 (95% CI: 0.80-0.86); an AUROC of 0.87 (95% CI: 0.84-0.90), 0.78 (95% CI: 0.75-0.82) and 0.86 (95% CI: 0.82-0.88); and a diagnostic odds ratio of 17 (95% CI: 7-43), 7 (95% CI: 4-12) and 34 (95% CI: 13-88), respectively. Meta-regressions revealed that the publication date, system used and number of valid measurements of SWE were the main causes of heterogeneity. SWE is a good technique for diagnosing mild and severe renal fibrosis, as well as a fair technique for diagnosing moderate fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Insuficiência Renal Crônica , Humanos , Técnicas de Imagem por Elasticidade/métodos , Curva ROC , Biópsia , Fibrose , Cirrose Hepática/patologia
10.
Elife ; 122023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622102

RESUMO

Inflammatory liver diseases are a major cause of morbidity and mortality worldwide; however, underlying mechanisms are incompletely understood. Here we show that deleting the focal adhesion protein Kindlin-2 expression in hepatocytes using the Alb-Cre transgenic mice causes a severe inflammation, resulting in premature death. Kindlin-2 loss accelerates hepatocyte apoptosis with subsequent compensatory cell proliferation and accumulation of the collagenous extracellular matrix, leading to massive liver fibrosis and dysfunction. Mechanistically, Kindlin-2 loss abnormally activates the tumor necrosis factor (TNF) pathway. Blocking activation of the TNF signaling pathway by deleting TNF receptor or deletion of Caspase 8 expression in hepatocytes essentially restores liver function and prevents premature death caused by Kindlin-2 loss. Finally, of translational significance, adeno-associated virus mediated overexpression of Kindlin-2 in hepatocytes attenuates the D-galactosamine and lipopolysaccharide-induced liver injury and death in mice. Collectively, we establish that Kindlin-2 acts as a novel intrinsic inhibitor of the TNF pathway to maintain liver homeostasis and may define a useful therapeutic target for liver diseases.


Assuntos
Proteínas do Citoesqueleto , Hepatócitos , Proteínas Musculares , Animais , Camundongos , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Musculares/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Acta Pharmacol Sin ; 44(2): 268-287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35896695

RESUMO

Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Fibrose , Cirrose Hepática/terapia , Cirrose Hepática/patologia , Fibrose Pulmonar/terapia , Fibrose Pulmonar/patologia , Inflamação/patologia
12.
Front Oncol ; 12: 866154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646647

RESUMO

Malignant tumors seriously threaten people's health and life worldwide. Natural products, with definite pharmacological effects and known chemical structures, present dual advantages of Chinese herbs and chemotherapeutic drug. Some of them exhibit favorable anti-cancer activity. Natural products were categorized into eight classes according to their chemical structures, including alkaloids, terpenoids and volatile oils, inorganic salts, phenylpropanoids, flavonoids and isoflavones, quinone, saponins and polysaccharides. The review focused on the latest advances in anti-cancer activity of representative natural products for every class. Additionally, anti-cancer molecular mechanism and derivatization of natural products were summarized in detail, which would provide new core structures and new insights for anti-cancer new drug development.

13.
BMC Cancer ; 22(1): 636, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681118

RESUMO

BACKGROUND: Aberrant methylation of EphA7 has been reported in the process of carcinogenesis but not in cervical cancer. Therefore, an integration study was performed to explore the association between EphA7 hypermethylation and cervical cancer and validate the potential value of EphA7 hypermethylation in the diagnosis of cervical cancer. METHODS: We performed an integration study to identify and validate the association between EphA7 methylation and cervical cancer. First, data on EphA7 methylation and expression in cervical cancer were extracted and analyzed via bioinformatics tools. Subsequently, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) were constructed to further demonstrate the association between DNA methylation and EphA7 expression. Ultimately, the clinical value of EphA7 methylation in cervical cancer was validated in cervical tissues and Thinprep cytologic test (TCT) samples by methylation-specific PCR (MSP) and quantitative methylation-specific PCR (QMSP), respectively. RESULTS: Pooled analysis showed that EphA7 promoter methylation levels were significantly increased in cervical cancer compared to normal tissues (P < 0.001) and negatively correlated with EphA7 expression. These prediction results were subsequently confirmed in cell lines; moreover, CRISPR-based methylation perturbation tools (dCas9-Tet1/DNMT3a) demonstrated that DNA methylation participates in the regulation of EphA7 expression directly. Consistent with these findings, the methylation level and the positive rate of EphA7 gradually increased with severity from normal to cancer stages in TCT samples (P < 0.01). CONCLUSIONS: EphA7 hypermethylation is present in cervical cancer and is a potential biomarker for the diagnosis of cervical cancer.


Assuntos
Metilação de DNA , Receptor EphA7 , Neoplasias do Colo do Útero , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptor EphA7/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética
14.
Front Chem ; 10: 867318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433636

RESUMO

Matrine is an alkaloid extracted from traditional Chinese herbs including Sophora flavescentis, Sophora alopecuroides, Sophora root, etc. It has the dual advantages of traditional Chinese herbs and chemotherapy drugs. It exhibits distinct benefits in preventing and improving chronic diseases such as cardiovascular disease and tumors. The review introduced recent research progresses on extraction, synthesis and derivatization of Matrine. The summary focused on the latest research advances of Matrine on anti-atherosclerosis, anti-hypertension, anti-ischemia reperfusion injury, anti-arrhythmia, anti-diabetic cardiovascular complications, anti-tumor, anti-inflammatory, anti-bacterium, anti-virus, which would provide new core structures and new insights for new drug development in related fields.

15.
Front Oncol ; 12: 847556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280745

RESUMO

New targeted chemotherapy agents greatly improved five-year survival in NSCLC patients, but which were susceptible to drug resistance. NVP-AUY922, terminated in phase II clinical trials, exhibited promising anti-NSCLC (non-small-cell lung cancer) activity targeting to Hsp90N (heat shock protein), which demonstrated advantages in overcoming drug resistance as a broad-spectrum anti-cancer target. It was expected to develop novel anti-NSCLC drugs to overcome drug resistance by the structural optimization of NVP-AUY922. However, the absence of high-resolution complex crystal structure of Hsp90N-NVP-AUY922 blocked the way. Herein, 1.59 Å-resolution complex crystal structure of Hsp90N-NVP-AUY922 (PDB ID 6LTI) was successfully determined by X-ray diffraction. Meanwhile, there was a strong binding capability between NVP-AUY922 and its target Hsp90N verified by TSA (ΔTm, -15.56 ± 1.78°C) and ITC (K d, 5.10 ± 2.10 nM). Results by the complex crystal structure, TSA and ITC verified that NVP-AUY922 well accommodated in the ATP-binding pocket of Hsp90N to disable the molecular chaperone activity of Hsp90. Therefore, NVP-AUY922 exhibited approving inhibitory activity on NSCLC cell line H1299 (IC50, 2.85 ± 0.06 µM) by inhibiting cell proliferation, inducing cell cycle arrest and promoting cell apoptosis. At the basis of the complex crystal structure and molecular interaction analysis, thirty-two new NVP-AUY922 derivatives were further designed, and among which twenty-eight new ones display enhanced binding force with Hsp90N by molecular docking evaluation. The results would promote anti-NSCLC new drug development to overcome drug resistance based on the lead compound NVP-AUY922.

16.
Nat Commun ; 13(1): 1025, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197460

RESUMO

Nonalcoholic fatty liver disease (NAFLD) affects a large population with incompletely defined mechanism(s). Here we report that Kindlin-2 is dramatically up-regulated in livers in obese mice and patients with NAFLD. Kindlin-2 haploinsufficiency in hepatocytes ameliorates high-fat diet (HFD)-induced NAFLD and glucose intolerance without affecting energy metabolism in mice. In contrast, Kindlin-2 overexpression in liver exacerbates NAFLD and promotes lipid metabolism disorder and inflammation in hepatocytes. A C-terminal region (aa 570-680) of Kindlin-2 binds to and stabilizes Foxo1 by inhibiting its ubiquitination and degradation through the Skp2 E3 ligase. Kindlin-2 deficiency increases Foxo1 phosphorylation at Ser256, which favors its ubiquitination by Skp2. Thus, Kindllin-2 loss down-regulates Foxo1 protein in hepatocytes. Foxo1 overexpression in liver abrogates the ameliorating effect of Kindlin-2 haploinsufficiency on NAFLD in mice. Finally, AAV8-mediated shRNA knockdown of Kindlin-2 in liver alleviates NAFLD in obese mice. Collectively, we demonstrate that Kindlin-2 insufficiency protects against fatty liver by promoting Foxo1 degradation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Haploinsuficiência , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
17.
Bone Res ; 10(1): 5, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013104

RESUMO

Intervertebral disc (IVD) degeneration (IVDD) is the main cause of low back pain with major social and economic burdens; however, its underlying molecular mechanisms remain poorly defined. Here we show that the focal adhesion protein Kindlin-2 is highly expressed in the nucleus pulposus (NP), but not in the anulus fibrosus and the cartilaginous endplates, in the IVD tissues. Expression of Kindlin-2 is drastically decreased in NP cells in aged mice and severe IVDD patients. Inducible deletion of Kindlin-2 in NP cells in adult mice causes spontaneous and striking IVDD-like phenotypes in lumbar IVDs and largely accelerates progression of coccygeal IVDD in the presence of abnormal mechanical stress. Kindlin-2 loss activates Nlrp3 inflammasome and stimulates expression of IL-1ß in NP cells, which in turn downregulates Kindlin-2. This vicious cycle promotes extracellular matrix (ECM) catabolism and NP cell apoptosis. Furthermore, abnormal mechanical stress reduces expression of Kindlin-2, which exacerbates Nlrp3 inflammasome activation, cell apoptosis, and ECM catabolism in NP cells caused by Kindlin-2 deficiency. In vivo blocking Nlrp3 inflammasome activation prevents IVDD progression induced by Kindlin-2 loss and abnormal mechanical stress. Of translational significance, adeno-associated virus-mediated overexpression of Kindlin-2 inhibits ECM catabolism and cell apoptosis in primary human NP cells in vitro and alleviates coccygeal IVDD progression caused by mechanical stress in rat. Collectively, we establish critical roles of Kindlin-2 in inhibiting Nlrp3 inflammasome activation and maintaining integrity of the IVD homeostasis and define a novel target for the prevention and treatment of IVDD.

18.
Nat Aging ; 2(4): 332-347, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117739

RESUMO

Osteoarthritis (OA) is an aging-related degenerative joint disease with a poorly defined mechanism. Here we report that kindlin-2 is highly expressed in articular chondrocytes and downregulated in the degenerated cartilage of aged mice and patients with OA. Kindlin-2 deletion in articular chondrocytes leads to spontaneous OA and exacerbates instability-induced OA lesions in adult mice. Kindlin-2 deficiency promotes mitochondrial oxidative stress and activates Stat3, leading to Runx2-mediated chondrocyte catabolism. Pharmacological inhibition of Stat3 activation or genetic ablation of Stat3 in chondrocytes reverses aberrant accumulation of Runx2 and extracellular-matrix-degrading enzymes and limits OA deteriorations caused by kindlin-2 deficiency. Deleting Runx2 in chondrocytes reverses structural changes and OA lesions caused by kindlin-2 deletion without downregulating p-Stat3. Intra-articular injection of AAV5-kindlin-2 decelerates progression of aging- and instability-induced knee joint OA in mice. Collectively, we identify a pathway consisting of kindlin-2, Stat3 and Runx2 in articular chondrocytes that is responsible for maintaining articular cartilage integrity and define a potential therapeutic target for OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Animais , Camundongos , Cartilagem Articular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteoartrite do Joelho/metabolismo , Articulação do Joelho/metabolismo , Envelhecimento , Condrócitos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
19.
Head Neck ; 44(1): 201-211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704649

RESUMO

BACKGROUND: Long non-coding RNAs regulate malignant behaviors of nasopharyngeal carcinoma (NPC). We aim to investigate the roles and mechanisms of long non-coding RNA maternally expressed gene 3 (lnc-MEG3) in NPC. METHODS: The expression levels of lnc-MEG3 and sequestosome 1 (SQSTM1) in NPC tissues and cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell invasion and migration abilities were evaluated using transwell and wound healing assays, respectively. RESULTS: Downregulated lnc-MEG3 expression and upregulated SQSTM1 expression were found in NPC tissues and cells. Overexpression of lnc-MEG3 inhibited invasion, migration, and epithelial-mesenchymal transition in NPC cells. Overexpression of lnc-MEG3 reduced the expression level of SQSTM1, and SQSTM1 expression was inversely correlated with lnc-MEG3 level in NPC tissues. Besides, overexpression of SQSTM1 reversed the effects of lnc-MEG3 overexpression. Moreover, knockdown of lnc-MEG3 enhanced NPC progression while its effects were eased by SQSTM1 silence. CONCLUSION: Lnc-MEG3 inhibits malignant behaviors by regulating SQSTM1 expression. It may serve as a therapeutic target to treat NPC.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica/genética , Proteína Sequestossoma-1
20.
Front Cell Dev Biol ; 9: 672679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422802

RESUMO

Bladder cancer (BC) is the most common malignant tumor in the urinary system, and its early diagnosis is conducive to improving clinical prognosis and prolonging overall survival time. However, few biomarkers with high sensitivity and specificity are used as diagnostic markers for BC. Multiple long non-coding RNAs (lncRNAs) are abnormally expressed in BC, and play key roles in tumorigenesis, progression and prognosis of BC. In this review, we summarize the expression, function, molecular mechanisms and the clinical significance of lncRNAs on bladder cancer. There are more than 100 dysregulated lncRNAs in BC, which are involved in the regulation of proliferation, cell cycle, apoptosis, migration, invasion, metabolism and drug resistance of BC. Meanwhile, the molecular mechanisms of lncRNAs in BC was explored, including lncRNAs interacting with DNA, RNA and proteins. Additionally, the abnormal expression of thirty-six lncRNAs is closely associated with multiple clinical characteristics of BC, including tumor size, metastasis, invasion, and drug sensitivity or resistance of BC. Furthermore, we summarize some potential diagnostic and prognostic biomarkers of lncRNA for BC. This review provides promising novel biomarkers in early diagnosis, prognosis and monitoring of BC based on lncRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA