Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(10): 101214, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37794587

RESUMO

Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Antígeno B7-H1/genética , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Microambiente Tumoral
2.
Clin Transl Med ; 12(9): e1037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36116139

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS: Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS: miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION: Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , MicroRNAs , Nucleosídeo NM23 Difosfato Quinases , RNA Longo não Codificante , Animais , Apoptose/genética , Capecitabina , Caspase 3 , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Autophagy ; 17(8): 1841-1855, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597296

RESUMO

Defective macroautophagy/autophagy and a failure to initiate the adaptive unfolded protein response (UPR) in response to the endoplasmic reticulum (ER) stress contributes to obesity-associated metabolic dysfunction. However, whether and how unresolved ER stress leads to defects in the autophagy pathway and to the progression of obesity-associated hepatic pathologies remains unclear. Obesity suppresses the expression of hepatic spliced XBP1 (X-box binding protein 1; sXBP1), the key transcription factor that promotes the adaptive UPR. Our RNA-seq analysis revealed that sXBP1 regulates genes involved in lysosomal function in the liver under fasting conditions. Chromatin immunoprecipitation (ChIP) analyzes of both primary hepatocytes and whole livers further showed that sXBP1 occupies the -743 to -523 site of the promoter of Tfeb (transcription factor EB), a master regulator of autophagy and lysosome biogenesis. Notably, this occupancy was significantly reduced in livers from patients with steatosis. In mice, hepatic deletion of Xbp1 (xbp1 LKO) suppressed the transcription of Tfeb as well as autophagy, whereas hepatic overexpression of sXbp1 enhanced Tfeb transcription and autophagy. Moreover, overexpression of Tfeb in the xbp1 LKO mouse liver ameliorated glucose intolerance and steatosis in mice with diet-induced obesity (DIO). Conversely, loss of TFEB function impaired the protective role of sXBP1 in hepatic steatosis in mice with DIO. These data indicate that sXBP1-Tfeb signaling has direct functional consequences in the context of obesity. Collectively, our data provide novel insight into how two organelle stress responses are integrated to protect against obesity-associated metabolic dysfunction.Abbreviations: AAV8: adeno-associated virus serotype 8; ACTB: actin, beta; ANOVA: analysis of variance; ATF6: activating transcription factor-6; ATG: autophagy related; BECN1: beclin 1; BMI: body mass index; ChIP: chromatin immunoprecipitation; CLEAR: coordinated lysosomal expression and regulation; Cre: cre recombinase; DIO: diet-induced obesity; EBSS: Earle's balanced salt solution; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HFD: high-fat diet; h: hours; HSCs: hepatic stellate cells; INS: insulin; L/A: ammonium chloride and leupeptin; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mRNA: messenger RNA; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; RD: regular diet; RFP: red fluorescent protein; SERPINA7/TBG: serpin family A member 7; SQSTM1/p62: sequestome 1; sXbp1 LOE: liver-specific overexpression of spliced Xbp1; TFEB: transcription factor EB; TG: thapsigargin; TN: tunicamycin; UPR: unfolded protein response; wks: weeks; WT: wild type; XBP1: X-box binding protein 1; xbp1 LKO: liver-specific Xbp1 knockout.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Autofagia/genética , Estresse do Retículo Endoplasmático , Humanos , Fígado/metabolismo , Lisossomos/metabolismo , Camundongos , Resposta a Proteínas não Dobradas/fisiologia
4.
Development ; 147(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439755

RESUMO

Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/metabolismo , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Knockout , Odontogênese , Fatores de Transcrição SOXB1/genética , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente/citologia , Dente/crescimento & desenvolvimento , Dente/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Proteína Homeobox PITX2
5.
J Natl Cancer Inst ; 112(5): 507-515, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31406992

RESUMO

BACKGROUND: Treatment failures in cancers, including multiple myeloma (MM), are most likely due to the persistence of a minor population of tumor-initiating cells (TICs), which are noncycling or slowly cycling and very drug resistant. METHODS: Gene expression profiling and real-time quantitative reverse transcription polymerase chain reaction were employed to define genes differentially expressed between the side-population cells, which contain the TICs, and the main population of MM cells derived from 11 MM patient samples. Self-renewal potential was analyzed by clonogenicity and drug resistance of CD24+ MM cells. Flow cytometry (n = 60) and immunofluorescence (n = 66) were applied on MM patient samples to determine CD24 expression. Therapeutic effects of CD24 antibodies were tested in xenograft MM mouse models containing three to six mice per group. RESULTS: CD24 was highly expressed in the side-population cells, and CD24+ MM cells exhibited high expression of induced pluripotent or embryonic stem cell genes. CD24+ MM cells showed increased clonogenicity, drug resistance, and tumorigenicity. Only 10 CD24+ MM cells were required to develop plasmacytomas in mice (n = three of five mice after 27 days). The frequency of CD24+ MM cells was highly variable in primary MM samples, but the average of CD24+ MM cells was 8.3% after chemotherapy and in complete-remission MM samples with persistent minimal residual disease compared with 1.0% CD24+ MM cells in newly diagnosed MM samples (n = 26). MM patients with a high initial percentage of CD24+ MM cells had inferior progression-free survival (hazard ratio [HR] = 3.81, 95% confidence interval [CI] = 5.66 to 18.34, P < .001) and overall survival (HR = 3.87, 95% CI = 16.61 to 34.39, P = .002). A CD24 antibody inhibited MM cell growth and prevented tumor progression in vivo. CONCLUSION: Our studies demonstrate that CD24+ MM cells maintain the TIC features of self-renewal and drug resistance and provide a target for myeloma therapy.


Assuntos
Mieloma Múltiplo/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígeno CD24/biossíntese , Antígeno CD24/imunologia , Carcinogênese , Autorrenovação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Células-Tronco Neoplásicas/imunologia
6.
Cancers (Basel) ; 11(9)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500347

RESUMO

SOX2 and OCT4 are key regulators of embryonic stem cell pluripotency. They are overexpressed in prostate cancers and have been associated with cancer stem cell (CSC) properties. However, reliable tools for detecting and targeting SOX2/OCT4-overexpressing cells are lacking, limiting our understanding of their roles in prostate cancer initiation, progression, and therapeutic resistance. Here, we show that a fluorescent reporter called SORE6 can identify SOX2/OCT4-overexpressing prostate cancer cells. Among tumor cells, the SORE6 reporter identified a small fraction with CSC hallmarks: rapid self-renewal, the capability to form tumors and metastasize, and resistance to chemotherapies. Transcriptome and biochemical analyses identified PI3K/AKT signaling as critical for maintaining the SORE6+ population. Moreover, a SORE6-driven herpes simplex virus thymidine kinase (TK) expression construct could selectively ablate SORE6+ cells in tumors, blocking tumor initiation and progression, and sensitizing tumors to chemotherapy. This study demonstrates a key role of SOX2/OCT4-associated prostate cancer stem cells in tumor development and therapeutic resistance, and identifies the SORE6 reporter system as a useful tool for characterizing CSCs functions in a native tumor microenvironment.

7.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165537, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449970

RESUMO

Transforming growth factor-ß (TGF-ß) signaling plays fundamental roles in the development and homeostasis of somatic cells. Dysregulated TGF-ß signaling contributes to cancer progression and relapse to therapies by inducing epithelial-to-mesenchymal transition (EMT), enriching cancer stem cells, and promoting immunosuppression. Although many TGF-ß-regulated genes have been identified, only a few datasets were obtained by next-generation sequencing. In this study, we performed RNA-sequencing analysis of MCF10A cells and identified 1166 genes that were upregulated and 861 genes that were downregulated by TGF-ß. Gene set enrichment analysis revealed that focal adhesion and metabolic pathways were the top enriched pathways of the up- and downregulated genes, respectively. Genes in these pathways also possess significant predictive value for renal cancers. Moreover, we confirmed that TGF-ß induced expression of MICAL1 and 2, and the histone demethylase, KDM7A, and revealed their regulatory roles on TGF-ß-induced cell migration. We also show a critical effect of KDM7A in regulating the acetylation of H3K27 on TGF-ß-induced genes. In sum, this study identified novel effectors that mediate the pro-migratory role of TGF-ß signaling, paving the way for future studies that investigate the function of MICAL family members in cancer and the novel epigenetic mechanisms downstream TGF-ß signaling.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Fator de Crescimento Transformador beta/metabolismo , Células A549 , Linhagem Celular Tumoral , Epigênese Genética , Transição Epitelial-Mesenquimal , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Transcriptoma
8.
Oncotarget ; 9(46): 27958-27973, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963254

RESUMO

Chemotherapy-induced diarrhea (CID), with clinical high incidence, adversely affects the efficacy of cancer treatment and patients' quality of life. Our study demonstrates that the citrus flavonoid hesperetin (Hst) has a superior potential as a new agent to prevent and alleviate CID. In the animal model for irinotecan (CPT-11) induced CID, Hst could selectively inhibit intestinal carboxylesterase (CES2) and thus reduce the local conversion of CPT-11 to cytotoxic SN-38 which causes intestinal toxicity. Oral administration of Hst manifested an excellent anti-diarrhea efficacy, prohibiting 80% of severe and 100% of mild diarrhea in the CPT-11 administered tumor-bearing mice. In addition, a significant attenuation of intestinal inflammation contributed to the anti-diarrhea effect of Hst. Moreover, Hst was found to work synergistically with CPT-11 in tumor inhibition by suppressing the tumor's STAT3 activity and recruiting tumoricidal macrophages into the tumor microenvironment. The anti-intestinal inflammation and anti-STAT3 properties of Hst would contribute its broad benefits to the management of diarrhea caused by other chemo or targeted agents, and more importantly, enhance and reinforce the anti-tumor effects of these agents, to improve patient outcomes.

9.
Dev Biol ; 429(1): 44-55, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28746823

RESUMO

The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1-/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Esmalte Dentário/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Incisivo/embriologia , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ratos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
10.
Oncotarget ; 8(67): 111213-111224, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340048

RESUMO

Many cancers, including multiple myeloma (MM), retain more cytosolic iron to promote tumor cell growth and drug resistance. Higher cytosolic iron promotes oxidative damage due to its interaction with reactive oxygen species generated by mitochondria. The variation of mitochondrial biogenesis in different stages of MM disease was evaluated using gene expression profiles in a large clinical dataset. Sixteen of 18mitochondrial biogenesis related gene sets, including mitochondrial biogenesis signature and oxidative phosphorylation, were increased in myeloma cells compared with normal plasma cells and high expression was associated with an inferior patient outcome. Relapsed and drug resistant myeloma samples had higher expression of mitochondrial biogenesis signatures than newly diagnosed patient samples. The expression of mitochondrial biogenesis genes was regulated by the cellular iron content, which showed a synergistic effect in patient outcome in MM. Pharmacological ascorbic acid induced myeloma cell death by inhibition of mitochondria oxidative phosphorylation in an in vivo model. Here, we identify that dysregulated mitochondrial biogenesis and iron homeostasis play a major role in myeloma progression and patient outcome and that pharmacological ascorbic acid, through cellular iron content and mitochondrial oxidative species, should be considered as a novel treatment in myeloma including drug-resistant and relapsed patients.

11.
J Biol Chem ; 289(39): 27327-27341, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25122764

RESUMO

Pitx2, Wnt/ß-catenin signaling, and microRNAs (miRs) play a critical role in the regulation of dental stem cells during embryonic development. In this report, we have identified a Pitx2:ß-catenin regulatory pathway involved in epithelial cell differentiation and conversion of mesenchymal cells to amelogenin expressing epithelial cells via miR-200a. Pitx2 and ß-catenin are expressed in the labial incisor cervical loop or epithelial stem cell niche, with decreased expression in the differentiating ameloblast cells of the mouse lower incisor. Bioinformatics analyses reveal that miR-200a-3p expression is activated in the pre-ameloblast cells to enhance epithelial cell differentiation. We demonstrate that Pitx2 activates miR-200a-3p expression and miR-200a-3p reciprocally represses Pitx2 and ß-catenin expression. Pitx2 and ß-catenin interact to synergistically activate gene expression during odontogenesis and miR-200a-3p attenuates their expression and directs differentiation. To understand how this mechanism controls cell differentiation and cell fate, oral epithelial and odontoblast mesenchymal cells were reprogrammed by a two-step induction method using Pitx2 and miR-200a-3p. Conversion to amelogenin expressing dental epithelial cells involved an up-regulation of the stem cell marker Sox2 and proliferation genes and decreased expression of mesenchymal markers. E-cadherin expression was increased as well as ameloblast specific factors. The combination of Pitx2, a regulator of dental stem cells and miR-200a converts mesenchymal cells to a fully differentiated dental epithelial cell type. This pathway and reprogramming can be used to reprogram mesenchymal or oral epithelial cells to dental epithelial (ameloblast) cells, which can be used in tissue repair and regeneration studies.


Assuntos
Amelogenina/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Incisivo/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Amelogenina/genética , Animais , Células Epiteliais/citologia , Proteínas de Homeodomínio/genética , Humanos , Incisivo/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , beta Catenina/genética , Proteína Homeobox PITX2
12.
Mol Cancer Ther ; 11(1): 108-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034498

RESUMO

The aryl hydrocarbon receptor (AHR) was initially identified as a receptor that bound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related environmental toxicants; however, there is increasing evidence that the AHR is an important new drug target for treating multiple diseases including breast cancer. Treatment of estrogen receptor (ER)-negative MDA-MB-231 and BT474 breast cancer cells with TCDD or the selective AHR modulator 6-methyl-1,3,-trichlorodibenzofuran (MCDF) inhibited breast cancer cell invasion in a Boyden chamber assay. These results were similar to those previously reported for the antimetastic microRNA-335 (miR-335). Both TCDD and MCDF induced miR-335 in MDA-MB-231 and BT474 cells and this was accompanied by downregulation of SOX4, a miR-335-regulated (inhibited) gene. The effects of TCDD and MCDF on miR-335 and SOX4 expression and interactions of miR-335 with the 3'-UTR target sequence in the SOX4 gene were all inhibited in cells transfected with an oligonucleotide (iAHR) that knocks down the AHR, thus confirming AHR-miR-335 interactions. MCDF (40 mg/kg/d) also inhibited lung metastasis of MDA-MB-231 cells in a tail vein injection model, showing that the AHR is a potential new target for treating patients with ER-negative breast cancer, a disease where treatment options and their effectiveness are limited.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , MicroRNAs/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Regiões 3' não Traduzidas/genética , Animais , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Dibenzodioxinas Policloradas/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/deficiência , Fatores de Transcrição SOXC/metabolismo
13.
J Biol Chem ; 286(24): 21372-83, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21504905

RESUMO

FoxJ1 is a forkhead transcription factor expressed in multiple tissues during development and a major regulator of cilia development. FoxJ1(-/-) mice present with defects in odontogenesis, and we correlate these defects to hierarchical interactions between homeodomain factors Pitx2 and Dlx2 with FoxJ1 in regulating their expression through direct physical interactions. Chromatin immunoprecipitation assays reveal endogenous Pitx2 and Dlx2 binding to the Dlx2 promoter and Dlx2 binding to the FoxJ1 promoter as well as Dlx2 and FoxJ1 binding to the amelogenin promoter. PITX2 activation of the Dlx2 promoter is attenuated by a direct Dlx2 physical interaction with PITX2. Dlx2 autoregulates its promoter, and Dlx2 transcriptionally activates the downstream gene FoxJ1. Dlx2 and FoxJ1 physically interact and synergistically regulate both Dlx2 and FoxJ1 promoters. Dlx2 and FoxJ1 also activate the amelogenin promoter, and amelogenin is required for enamel formation and late stage tooth development. FoxJ1(-/-) mice maxillary and mandibular incisors are reduced in length and width and have reduced amelogenin expression. FoxJ1(-/-) mice show a reduced and defective ameloblast layer, revealing a biological effect of these transcription factor hierarchies during tooth morphogenesis. These transcriptional mechanisms may contribute to other developmental processes such as neuronal, pituitary, and heart development.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese/genética , Amelogenina/genética , Animais , Células CHO , Imunoprecipitação da Cromatina , Cílios/metabolismo , Cricetinae , Cricetulus , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Mapeamento de Interação de Proteínas , Dente/embriologia , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
14.
Dev Biol ; 347(2): 289-300, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20816801

RESUMO

Tbx1(-/-) mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1(-/-) embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1(-/+)/Pitx2(-/+) double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Dente/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Primers do DNA/genética , Síndrome de DiGeorge/embriologia , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Odontogênese/genética , Odontogênese/fisiologia , Gravidez , Transdução de Sinais , Proteínas com Domínio T/deficiência , Dente/citologia , Dente/metabolismo , Anormalidades Dentárias/embriologia , Anormalidades Dentárias/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA