Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674494

RESUMO

Previously, we demonstrated that the administration of either geranylgeraniol (GGOH) or green tea polyphenols (GTP) improved bone health. This study examined the combined effects of GGOH and GTP on glucose homeostasis in addition to bone remodeling in obese mice. We hypothesized that GGOH and GTP would have an additive or synergistic effect on improving glucose homeostasis and bone remodeling possibly in part via suppression of proinflammatory cytokines. Forty-eight male C57BL/6J mice were assigned to a high-fat diet (control), HFD + 400 mg GGOH/kg diet (GG), HFD + 0.5% GTP water (TP), or HFD + GGOH + GTP (GGTP) diet for 14 weeks. Results demonstrated that GTP supplementation improved glucose tolerance in obese mice. Neither GGOH nor GTP affected pancreas insulin or bone formation procollagen type I intact N-terminal, bone volume at the lumbar vertebrae, or bone parameters at the trabecular bone and cortical bone of the femur. There was an interactive effect for serum bone resorption collagen type 1 cross-linked C-telopeptide concentrations, resulting in no-GGOH and no-GTP groups having the highest values. GGOH increased trabecular number and decreased trabecular separation at the lumbar vertebrae. GTP increased trabecular thickness at lumbar vertebrae. The GG group produced the greatest connectivity density and the lowest structure model index. Only GTP, not GGOH, decreased adipokines concentrations (resistin, leptin, monocyte chemoattractant protein-1, and interleukin-6). In an obese male mouse model, individual GGOH and GTP supplementation improved glucose homeostasis, serum CTX, and trabecular microstructure of LV-4. However, the combined GGOH and GTP supplementation compromises such osteoprotective effects on serum CTX and trabecular bone of obese mice.


Assuntos
Densidade Óssea , Polifenóis , Camundongos , Animais , Masculino , Camundongos Obesos , Polifenóis/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Remodelação Óssea , Dieta Hiperlipídica/efeitos adversos , Chá/química , Glucose/farmacologia , Homeostase , Biomarcadores
2.
J Nutr ; 151(9): 2697-2704, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34113980

RESUMO

BACKGROUND: Bone marrow osteoblasts and adipocytes are derived from a common mesenchymal stem cell and have a reciprocal relationship. Peroxisome proliferator-activated receptor gamma (PPARγ), a regulator for adipocyte differentiation, may be a potential target for reducing obesity and increasing bone mass. OBJECTIVES: This study tested the hypothesis that bone-specific Pparg conditional knockout (cKO), via deletion of Pparg from bone marrow stromal cells (BMSC) using Osterix 1 (Osx1)-Cre, would prevent high-fat (HF) diet-induced bone deterioration in mice. METHODS: PPARγ cKO (PPARγfl/fl: Osx1-Cre) and floxed littermate control (PPARγfl/fl Osx1-Cre- ) mice that were 6 weeks old were randomly assigned to 4 groups (n = 12/group, 6 male and 6 female) and fed ad libitum with either a normal-fat (NF) purified diet (3.85 kcal/g; 10% energy as fat) or an HF diet (4.73 kcal/g; 45% energy as fat) for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. Data were analyzed by 2-way ANOVA with Tukey post hoc comparison. RESULTS: The HF diet decreased the tibial and lumbar vertebrae trabecular bone volume/total volume (BV/TV) by 28% and 18%, respectively, compared to the NF diet (P < 0.01). PPARγ cKO mice had 23% lower body fat mass and 9% lower lean mass than control mice. PPARγ cKO mice had 41% greater tibial trabecular BV/TV compared to control mice. None of trabecular bone parameters at the second lumbar vertebra were affected by genotype. PPARγ cKO mice had decreased cortical thickness compared to control mice. PPARγ cKO mice had a 14% lower (P < 0.01) serum concentration of leptin and a 35% higher (P < 0.05) concentration of osteocalcin compared with control mice. CONCLUSIONS: These data indicate that PPARγ has site-specific impacts on bone structures in mice and that knockout PPARγ in BMSC increased bone mass (BV/TV) in the tibia but not the lumbar vertebrae. PPARγ disruption in BMSC did not prevent HF diet-induced bone deterioration in mice.


Assuntos
Células-Tronco Mesenquimais , PPAR gama , Animais , Osso e Ossos , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética
3.
J Nutr Biochem ; 86: 108492, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920088

RESUMO

The role of the gut microbiome in bone health has received significant attention in the past decade. We investigated the effects of green tea polyphenols (GTP) and annatto-extracted tocotrienols (AT) on bone properties and gut microbiome in obese mice. Male mice were assigned to a two (no AT vs. 400 mg/kg diet AT) × two (no GTP vs. 0.5% w/v GTP) factorial design, namely control, G, T, and G+T group respectively, for 14 weeks. The 4th lumbar vertebra (LV-4) and femur were harvested for bone microstructural analysis using µ-CT. Microbiome analysis using 16S rRNA gene sequencing of cecal feces was performed. AT increased bone volume at distal femur. GTP increased serum procollagen type 1 N-terminal propeptide concentration, bone volume at the distal femur and the LV-4, and trabecular number at distal femur; whereas GTP decreased trabecular separation at distal femur. Interactions between GTP and AT were observed in serum C-terminal telopeptide of type I collagen level (control>G=T=G+T) as well as the cortical bone area (control

Assuntos
Bixaceae/química , Osso e Ossos/efeitos dos fármacos , Carotenoides/química , Microbiota/efeitos dos fármacos , Extratos Vegetais/química , Polifenóis/farmacologia , Chá , Tocotrienóis/farmacologia , Vitamina K 2/metabolismo , Animais , Peso Corporal , Osso e Ossos/patologia , Clostridiales , Colágeno Tipo I/metabolismo , DNA/metabolismo , Fêmur/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fragmentos de Peptídeos/química , RNA Ribossômico 16S/metabolismo , Microtomografia por Raio-X
4.
J Nutr ; 150(1): 99-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511877

RESUMO

BACKGROUND: Intake of total fat is linked to obesity and inversely associated with bone density in humans. Epidemiologic and animal studies show that long-chain n-3 (ω-3) PUFAs supplied as fish oil (FO) are beneficial to skeletal health. OBJECTIVE: This study tested the hypothesis that increasing dietary FO would decrease adiposity and improve bone-related outcomes in growing obese mice. METHODS: Male C57BL/6 mice at 6 wk old were assigned to 6 treatment groups and fed either a normal-fat diet (3.85 kcal/g and 10% energy as fat) or a high-fat diet (HF; 4.73 kcal/g and 45% energy as fat) containing either 0%, 3%, or 9% energy as FO (0FO, 3FO, and 9FO, respectively) ad libitum for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. RESULTS: The HF diet increased the expression of the adipose tissue tumor necrosis factor α (Tnfa) and serum concentrations of leptin and tartrate-resistant acid phosphatase (TRAP), and decreased serum concentrations of osteocalcin and bone-specific alkaline phosphatase (P < 0.05). FO decreased fat mass (P < 0.05), serum TRAP (P < 0.05), and adipose tissue Tnfa expression (P < 0.01). Bone content of long-chain n-3 PUFAs was increased and n-6 PUFAs were decreased with the elevation in dietary FO content (P < 0.01). Compared with mice fed 9FO, animals fed 3FO had higher femoral bone volume/total volume (25%), trabecular number (23%), connectivity density (82%), and bone mass of second lumbar vertebrae (12%) and lower femoral trabecular separation (-19%). Mice fed the 3FO HF diet had 42% higher bone mass than those fed the 0FO HF diet. CONCLUSIONS: These data indicate increasing dietary FO ≤3% energy can decrease adiposity and mitigate HF diet-induced bone deterioration in growing C57BL/6 mice possibly by reducing inflammation and bone resorption. FO at 9% diet energy had no further beneficial effects on bone of obese mice.


Assuntos
Adiposidade/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Óleos de Peixe/administração & dosagem , Animais , Peso Corporal , Ingestão de Energia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Calcif Tissue Int ; 104(3): 285-300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30413854

RESUMO

We investigated the effects of 6-month green tea polyphenols (GTP) supplementation on bone architecture, turnover, and mechanical properties in middle-aged ovariectomized (OVX) rats. Female rats were sham-operated (n = 39, 13/group) or OVX (n = 143, 13/group). Sham-control and OVX-control rats (n = 39) receiving no GTP were assigned for sample collection at baseline, 3, or 6 months. The remaining OVX rats (n = 104) were randomized to 0.15%, 0.5%, 1%, and 1.5% (g/dL) GTP for 3 or 6 months. Blood and bone samples were collected. Relative to the OVX-control group, GTP (1% and 1.5%) lowered serum procollagen type 1 N-terminal propeptide at 3 and 6 months, C-terminal telopeptides of type I collagen at 3 months, and insulin-like growth factor-I at 6 months. GTP did not affect bone mineral content and density. At 6 months, no dose of GTP positively affected trabecular bone volume based on microCT, but a higher cortical thickness and improved biomechanical properties of the femur mid-diaphysis was observed in the 1.5% GTP-treated group. At 3 and 6 months, GTP (0.5%, 1%, and 1.5%) had lower rates of trabecular bone formation and resorption than the OVX-control group, but the inhibitory effects of GTP on periosteal and endocortical bone mineralization and formation at the tibial midshaft were only evident at 3 months. GTP at higher doses suppressed bone turnover in the trabecular and cortical bone of OVX rats and resulted in improved cortical bone structural and biomechanical properties, although it was not effective in preventing the ovariectomy-induced dramatic cancellous bone loss.


Assuntos
Envelhecimento/fisiologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Polifenóis/farmacologia , Chá , Envelhecimento/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso e Ossos/fisiologia , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Ovariectomia , Polifenóis/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Chá/química
6.
Br J Nutr ; 120(5): 500-507, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30022739

RESUMO

This study was designed to evaluate the effects of elevated fruit and vegetable intake on bone turnover markers. In all, twenty-nine subjects (nine male and twenty female, with a mean age of 32·1 (sem 2·5) years) participated in a 28-week single-arm experimental feeding intervention trial and consumed a prescribed low-fruit and vegetable diet for 6 weeks (depletion-1), a provided high-fruit and vegetable diet for 8 weeks (fruit: 360-560 g; vegetables: 450-705 g), another prescribed low-fruit and vegetable diet for 6 weeks (depletion-2) and then their usual diets for 8 weeks (repletion). Serum bone-related biomarkers were analysed with commercial ELISA kits. Plasma carotenoid levels decreased as a result of the depletion phase and increased with the high-fruit and vegetable diet. Compared with the baseline, depletion-1 resulted in higher serum bone resorption marker C-terminal telopeptide of type 1 collagen (CTX) and lower bone formation marker alkaline phosphatase (BAP) (CTX, 0·68 (sem 0·05) v. 0·97 (sem 0·08) ng/ml and BAP, 10·7 (sem 0·7) v. 9·5 (sem 0·8) µg/l for the baseline and the depletion-1, respectively, P<0·05). High intake of fruit and vegetables decreased serum CTX (P<0·05) to 0·60 (sem 0·04) ng/ml and increased serum BAP to 11·3 (sem 0·7) µg/l (P<0·05), compared with the depletion-1 phase. Serum concentrations of CTX were inversely correlated and those of BAP were positively correlated with blood lycopene. These data show that increased fruit and vegetable consumption at or above federal dietary guidance may be beneficial to bone health.


Assuntos
Fosfatase Alcalina/sangue , Biomarcadores/sangue , Remodelação Óssea/fisiologia , Dieta , Frutas , Verduras , Adulto , Reabsorção Óssea/sangue , Osso e Ossos/enzimologia , Carotenoides/sangue , Colágeno Tipo I/sangue , Feminino , Humanos , Masculino , Osteogênese/fisiologia , Peptídeos/sangue
7.
J Nutr ; 147(10): 1909-1916, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28814530

RESUMO

Background: Chronic inflammation is associated with increased bone resorption and is linked to osteopenia, or low bone mass. Obesity is also associated with low-grade chronic upregulation of inflammatory cytokines.Objective: This study investigated the effect of high-fat (HF) diet-induced obesity on bone structure changes in growing mice with existing systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide (LPS).Methods: Forty-eight 6-wk-old female C57BL/6 mice were randomly assigned to 4 treatment groups (n = 12/group) in a 2 × 2 factorial design-control (placebo) or LPS treatment (1.5 µg/d)-and consumed either a normal-fat (NF, 10% of energy as fat) or an HF (45% of energy as fat) diet ad libitum for 13 wk. Bone structure, serum biomarkers of bone turnover, and osteoclast differentiation were measured.Results: No alterations were observed in final body weights, fat mass, or lean mass in response to LPS treatment. LPS treatment increased serum concentration of tartrate-resistant acid phosphatase (TRAP, a bone resorption marker) and bone marrow osteoclast differentiation and decreased femoral and lumbar vertebral bone volume (BV):total volume (TV) by 25% and 24%, respectively, compared with the placebo. Mice fed the HF diet had greater body weight at the end of the study (P < 0.01) due to increased fat mass (P < 0.01) than did mice fed the NF diet. The HF diet increased serum TRAP concentration, bone marrow osteoclast differentiation, and expression of tumor necrosis factor α, interleukin 1ß and interleukin 6 in adipose tissue. Compared with the NF diet, the HF diet decreased BV:TV by 10% and 8% at femur and lumbar vertebrae, respectively, and the HF diet was detrimental to femoral and lumbar vertebral bone structure with decreased trabecular number and increased trabecular separation and structure model index.Conclusion: Results suggest that HF diets and systemic chronic inflammation have independent negative effects on bone structure in mice.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Osso e Ossos/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Inflamação/complicações , Obesidade/complicações , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Doenças Ósseas Metabólicas/metabolismo , Remodelação Óssea , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular , Gorduras na Dieta/administração & dosagem , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Inflamação/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipopolissacarídeos , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Distribuição Aleatória , Fosfatase Ácida Resistente a Tartarato/sangue , Fator de Necrose Tumoral alfa/sangue
8.
Hum Gene Ther ; 27(9): 679-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27158796

RESUMO

Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at menopause. Therefore, anti-inflammatory strategies hold a great potential for the prevention of postmenopausal osteoporosis. In this study, we investigated the effect of gene therapy of recombinant adeno-associated virus (rAAV)-mediated human alpha-1 antitrypsin (hAAT), a multifunctional protein that has anti-inflammatory property, on bone loss in an ovariectomy-induced osteoporosis mouse model. Adult ovariectomized (OVX) mice were intraperitoneally (i.p.) injected with hAAT (protein therapy), rAAV8-CB-hAAT (gene therapy), or phosphate buffer saline (PBS). Age-matched and sham-operated animals were used as controls. Eight weeks after the treatment, animals were sacrificed and bone-related biomarkers and vertebral bone structure were evaluated. Results showed that hAAT gene therapy significantly decreased serum IL-6 level and receptor activator of NF-κB (RANK) gene expression in bone. Importantly, hAAT gene therapy increased bone volume/total volume and decreased structure model index (SMI) compared to PBS injection in OVX mice. These results demonstrate that hAAT gene therapy by rAAV vector efficiently mitigates bone loss possibly through inhibition of proinflammatory cytokine IL-6 and RANK gene expression. Considering the safety profile of hAAT and rAAV vector in humans, our results provide a new alternative for the treatment of osteoporosis.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Osteoporose/prevenção & controle , Ovariectomia/efeitos adversos , alfa 1-Antitripsina/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/etiologia
9.
Nutr Res ; 36(4): 320-327, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27001277

RESUMO

Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice.


Assuntos
Densidade Óssea/fisiologia , Dieta Hiperlipídica , Estradiol/sangue , Ovariectomia , Aumento de Peso , Animais , Dieta , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Osteoporose/fisiopatologia
10.
Nutr Res ; 35(12): 1095-105, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26525915

RESUMO

This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet.


Assuntos
Composição Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Restrição Calórica/efeitos adversos , Camellia sinensis/química , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Osteoporose/prevenção & controle , Adiponectina/sangue , Tecido Adiposo/metabolismo , Animais , Compartimentos de Líquidos Corporais/metabolismo , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Suplementos Nutricionais , Ingestão de Energia , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Obesidade/complicações , Osteogênese/efeitos dos fármacos , Osteoporose/etiologia , Osteoporose/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Ratos Sprague-Dawley
11.
J Nutr ; 144(3): 289-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24381219

RESUMO

Obesity induced by high-fat (HF) diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione status and mitigates bone microstructure deterioration in mice fed an HF diet. Forty-eight 6-wk-old male C57BL/6 mice were randomly assigned to 4 treatment groups (n = 12 per group) and fed either a normal-fat [NF (10% energy as fat)] or an HF (45% energy as fat) diet ad libitum with or without NAC supplementation at 1 g/kg diet for 17 wk. Compared with the NF groups, mice in the HF groups had higher body weight, greater serum leptin concentrations and osteoclast differentiation, and lower trabecular bone volume, trabecular number, and connectivity density (P < 0.05). NAC supplementation increased the serum-reduced glutathione concentration and bone volume and decreased osteoclast differentiation in HF-fed mice (P < 0.05). We further demonstrated that osteoclast differentiation was directly regulated by glutathione status. NAC treatment of murine macrophage RAW 264.7 cells in vitro increased glutathione status and decreased osteoclast formation. These results show that NAC supplementation increases the bone mass of obese mice induced by an HF diet through elevating glutathione status and decreasing bone resorption.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Densidade Óssea/efeitos dos fármacos , Dieta Hiperlipídica , Suplementos Nutricionais , Osteoclastos/efeitos dos fármacos , Animais , Peso Corporal , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Glutationa/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/patologia , Osteoclastos/metabolismo
12.
J Med Food ; 16(5): 421-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23631490

RESUMO

This study evaluates the effects of green tea polyphenols (GTPs) on bone microarchitecture in high-fat-diet (HFD)-induced obese female rats. Thirty-six 3-month-old female rats were fed either a control diet or a HFD for 4 months. Animals in the control group continued on the control diet for another 4 months. Animals in the HFD group were divided into two groups, with 0.5 g/100 mL GTP (the HFD+GTP group) or without GTP (the HFD group) in drinking water, in addition to the HFD for another 4 months. Compared to the control group, the HFD group increased bone formation and erosion rates at the tibia, decreased trabecular volume and thickness, but had no impact on bone mineral density (BMD), trabecular number (Tb.N), and separation. Compared to the control group, the HFD+GTP group demonstrates a greater Tb.N at the proximal tibia, and a greater trabecular thickness at the femur and the lumbar vertebrae, but a smaller trabecular separation (Tb.Sp) and mineralizing surface at the proximal tibia, and a reduced endocortical mineral apposition rate (MAR) at the tibia shaft. Relative to the HFD group, the HFD+GTP group demonstrates (1) a higher BMD at the femur, a greater trabecular volume, thickness, and number at the proximal tibia, a larger cortical area and thickness at the tibial shaft, and a greater trabecular volume and thickness at the femur and the lumbar vertebrae, (2) a smaller Tb.Sp, MAR, bone formation rate, and eroded surface at the tibia. We concluded that GTP supplementation in drinking water improves bone microarchitecture in the HFD-induced obese female rats, possibly through suppressing bone turnover, resulting in a larger net bone volume.


Assuntos
Osso e Ossos/fisiopatologia , Camellia sinensis/química , Regulação para Baixo , Obesidade/dietoterapia , Osteogênese , Preparações de Plantas/metabolismo , Polifenóis/metabolismo , Animais , Densidade Óssea , Osso e Ossos/química , Dieta Hiperlipídica/efeitos adversos , Feminino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Chá/metabolismo
13.
Nutr Res ; 32(6): 448-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22749181

RESUMO

This study investigates the effects of green tea polyphenols (GTPs) on body composition and bone properties along with mechanisms in obese female rats. Thirty-six 3-month-old Sprague Dawley female rats were fed either a low-fat (LF) or a high-fat (HF) diet for 4 months. Animals in the LF diet group continued on an LF diet for additional 4 months, whereas those in the HF diet group were divided into 2 groups: with GTP (0.5%) or without in drinking water, in addition to an HF diet for another 4 months. Body composition, femur bone mass and strength, serum endocrine and proinflammatory cytokines, and liver glutathione peroxidase (GPX) protein expression were determined. We hypothesized that supplementation of GTP in drinking water would benefit body composition, enhance bone quality, and suppress obesity-related endocrines in HF diet-induced obese female rats and that such changes are related to an elevation of antioxidant capacity and a reduction of proinflammatory cytokine production. After 8 months, compared with the LF diet, the HF diet increased percentage of fat mass and serum insulin-like growth factor I and leptin levels; reduced percentage of fat-free mass, bone strength, and GPX protein expression; but had no effect on bone mineral density and serum adiponectin levels in the rats. Green tea polyphenol supplementation increased percentage of fat-free mass, bone mineral density and strength, and GPX protein expression and decreased percentage of fat mass, serum insulin-like growth factor I, leptin, adiponectin, and proinflammatory cytokines in the obese rats. This study shows that GTP supplementation benefited body composition and bone properties in obese rats possibly through enhancing antioxidant capacity and suppressing inflammation.


Assuntos
Antioxidantes/farmacologia , Composição Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Obesidade/fisiopatologia , Polifenóis/farmacologia , Chá/química , Adiponectina/sangue , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Água Potável/administração & dosagem , Ingestão de Energia , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Músculo Esquelético/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
14.
J Orthop Surg Res ; 6: 30, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21676245

RESUMO

Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely affects health. The rates of obesity rates have doubled since 1980 and as of 2007, 33% of men and 35% of women in the US are obese. Obesity is positively associated to many chronic disorders such as hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, and certain cancers. It is estimated that the direct medical cost associated with obesity in the United States is ~$100 billion per year.Bone mass and strength decrease during adulthood, especially in women after menopause. These changes can culminate in osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration resulting in increased bone fracture risk. It is estimated that there are about 10 million Americans over the age of 50 who have osteoporosis while another 34 million people are at risk of developing the disease. In 2001, osteoporosis alone accounted for some $17 billion in direct annual healthcare expenditure. Several lines of evidence suggest that obesity and bone metabolism are interrelated. First, both osteoblasts (bone forming cells) and adipocytes (energy storing cells) are derived from a common mesenchymal stem cell and agents inhibiting adipogenesis stimulated osteoblast differentiation and vice versa, those inhibiting osteoblastogenesis increased adipogenesis. Second, decreased bone marrow osteoblastogenesis with aging is usually accompanied with increased marrow adipogenesis. Third, chronic use of steroid hormone, such as glucocorticoid, results in obesity accompanied by rapid bone loss. Fourth, both obesity and osteoporosis are associated with elevated oxidative stress and increased production of proinflammatory cytokines. At present, the mechanisms for the effects of obesity on bone metabolism are not well defined and will be the focus of this review.


Assuntos
Osso e Ossos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Adipócitos/citologia , Adipócitos/fisiologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/citologia , Diferenciação Celular/fisiologia , Citocinas/fisiologia , Humanos , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia
15.
Inflamm Res ; 60(7): 665-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21373880

RESUMO

OBJECTIVE: Green tea proposes anti-inflammatory properties which may attenuate chronic inflammation-induced fibrosis of vessels. This study evaluated whether green tea polyphenols (GTP) can avert fibrosis or vascular disruption along with mechanisms in rats with chronic inflammation. TREATMENTS: Forty 3-month-old female rats were assigned to a 2 (placebo vs. lipopolysaccharide, administration) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design for 12 weeks. METHODS: Masson's trichrome staining evaluated myocardial fibrosis in coronary vessels and surrounding myocardium. Whole blood specimens were counted for differentials. Spleen tumor necrosis factor-α (TNF-α) mRNA expression was determined by real-time RT-PCR. Data were analyzed by two-way analysis of variance (ANOVA) followed by mean separation procedures. RESULTS: After 12 weeks, lipopolysaccharide administration induced myocardial fibrosis in vessels and surrounding myocardium, spleen TNF-α mRNA expression, and leukocytes, while GTP supplementation in drinking water significantly averted such observation. CONCLUSIONS: GTP attenuates myocardial fibrosis through a suppression of chronic inflammation and innate immune responses.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Coração/efeitos dos fármacos , Inflamação/prevenção & controle , Miocárdio/patologia , Fenóis/farmacologia , Chá/química , Animais , Anti-Inflamatórios/administração & dosagem , Suplementos Nutricionais , Feminino , Fibrose/patologia , Flavonoides/administração & dosagem , Humanos , Fenóis/administração & dosagem , Polifenóis , Distribuição Aleatória , Ratos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Calcif Tissue Int ; 88(6): 455-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21431364

RESUMO

Recent studies show that green tea polyphenols (GTPs) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. This study evaluated the efficacy of GTPs at mitigating bone loss and microstructure deterioration along with related mechanisms in androgen-deficient aged rats, a model of male osteoporosis. A 2 (sham vs. orchidectomy) × 2 (no GTP and 0.5% GTP in drinking water) factorial design was studied for 16 weeks using 40 aged male rats. An additional 10 rats (baseline group) were killed at the beginning of study to provide baseline parameters. There was no difference in femoral mineral density between baseline and the sham only group. Orchidectomy suppressed serum testosterone and tartrate-resistant acid phosphatase concentrations, liver glutathione peroxidase activity, bone mineral density, and bone strength. Orchidectomy also decreased trabecular bone volume, number, and thickness in the distal femur and proximal tibia and bone-formation rate in trabecular bone of proximal tibia but increased serum osteocalcin concentrations and bone-formation rates in the endocortical tibial shaft. GTP supplementation resulted in increased serum osteocalcin concentrations, bone mineral density, and trabecular volume, number, and strength of femur; increased trabecular volume and thickness and bone formation in both the proximal tibia and periosteal tibial shaft; decreased eroded surface in the proximal tibia and endocortical tibial shaft; and increased liver glutathione peroxidase activity. We conclude that GTP supplementation attenuates trabecular and cortical bone loss through increasing bone formation while suppressing bone resorption due to its antioxidant capacity.


Assuntos
Envelhecimento/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Suplementos Nutricionais , Flavonoides/farmacologia , Orquiectomia , Fenóis/farmacologia , Chá , Envelhecimento/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/ultraestrutura , Feminino , Flavonoides/administração & dosagem , Masculino , Orquiectomia/efeitos adversos , Osteoporose/patologia , Osteoporose/prevenção & controle , Fenóis/administração & dosagem , Polifenóis , Ratos , Ratos Endogâmicos F344 , Chá/química , Testosterona/sangue
17.
J Nutr Biochem ; 22(7): 673-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21036589

RESUMO

This study investigated the effects of green tea polyphenols (GTP) and alfacalcidol on bone microstructure and strength along with possible mechanisms in rats with chronic inflammation. A 12-week study using a 2 (no GTP vs. 0.5%, w/v GTP in drinking water)×2 (no alfacalcidol vs. 0.05 µg/kg alfacalcidol orally, 5×/week) factorial design was employed in lipopolysaccharide (LPS)-administered female rats. A group receiving placebo administration was used to compare with a group receiving LPS administration only to evaluate the effect of LPS. Changes in tibial and femoral microarchitecture and strength of femur were evaluated. Difference in expression of tumor necrosis factor-α (TNF-α) in proximal tibia using immunohistochemistry was examined. Compared to the placebo group, the LPS-administered-only group had significantly lower femoral mass, trabecular volume, thickness and number in proximal tibia and femur, and lower periosteal bone formation rate in tibial shafts but had significantly higher trabecular separation and osteoclast number in proximal tibia and eroded surface in endocortical tibial shafts. Both GTP and alfacalcidol reversed these LPS-induced detrimental changes in femur, proximal tibia and endocortical tibial shaft. Both GTP and alfacalcidol also significantly improved femoral strength, while significantly suppressed TNF-α expression in proximal tibia. There were significant interactions in femoral mass and strength, trabecular separation, osteoclast number and TNF-α expression in proximal tibia. A combination of both showed to sustain bone microarchitecture and strength. We conclude that a protective impact of GTP and alfacalcidol in bone microarchitecture during chronic inflammation may be due to a suppression of TNF-α.


Assuntos
Flavonoides/uso terapêutico , Hidroxicolecalciferóis/uso terapêutico , Fenóis/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas Metabólicas/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Inflamação/tratamento farmacológico , Polifenóis , Ratos , Chá/química , Tíbia/efeitos dos fármacos , Tíbia/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
18.
Ann N Y Acad Sci ; 1240: E31-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22360827

RESUMO

Proinflammatory cytokines are primary mediators of bone loss in estrogen deficiency. This study determined whether alpha-1 antitrypsin (AAT), a multifunctional protein with proteinase inhibitor and anti-inflammatory activities, mitigates bone loss induced by estrogen deficiency. Mice were either sham-operated or ovariectomized and injected with either AAT or phosphate buffered saline (PBS). Ovariectomy resulted in decreased wet uterus weight, significant bone loss, increased serum leptin concentrations, and higher body weight compared to sham. AAT injection increased tibial trabecular bone volume/total volume and trabecular thickness compared to PBS injection in ovariectomized mice. Ovariectomized mice with AAT treatment had higher uterus weight, lower serum osteocalcin levels, fewer bone marrow tartrate-resistant acid phosphatase-positive osteoclasts, and less expression of calcitonin receptor in bone than that in PBS-injected mice. These data demonstrate that AAT mitigates ovariectomy-induced bone loss in mice possibly through inhibiting osteoclast activity and bone resorption.


Assuntos
Osteoporose/prevenção & controle , Ovariectomia , Inibidores de Serina Proteinase/uso terapêutico , alfa 1-Antitripsina/uso terapêutico , Animais , Quimioprevenção , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Osteoporose/etiologia , Inibidores de Serina Proteinase/farmacologia , Útero/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia
19.
Ann N Y Acad Sci ; 1192: 292-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20392249

RESUMO

Obesity-derived body mass may be detrimental to bone health through not well-defined mechanisms. In this study we determined changes in bone structure and serum cytokines related to bone metabolism in diet-induced obese mice. Mice fed a high-fat diet (HFD) had higher serum tartrate-resistant acid phosphatase (TRAP) and leptin but lower osteocalcin concentrations than those fed the normal-fat diet. The HFD increased multinucleated TRAP-positive osteoclasts in bone marrow compared to the control diet. Despite being much heavier, mice fed the HFD had lower femoral bone volume, trabecular number, and connectivity density and higher trabecular separation than mice on the control diet. These findings suggest that obesity induced by a HFD increases bone resorption that may blunt any positive effects of increased body weight on bone.


Assuntos
Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Dieta Aterogênica , Obesidade/etiologia , Obesidade/fisiopatologia , Fosfatase Ácida/sangue , Animais , Densidade Óssea/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Gorduras na Dieta/farmacologia , Isoenzimas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/patologia , Tamanho do Órgão/fisiologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Fosfatase Ácida Resistente a Tartarato
20.
J Nutr Biochem ; 21(10): 968-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19962296

RESUMO

The purpose of this study was to explore the bioavailability, efficacy and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 [placebo vs. lipopolysaccharide (LPS)]×2 (no GTP vs. 0.5% GTP in drinking water) factorial design enabled the evaluation of effects of LPS administration, GTP levels, and LPS×GTP interaction. Urinary GTP components and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were determined by high-pressure liquid chromatography for bioavailability and molecular mechanism, respectively. Efficacy was evaluated by examining changes in femoral mineral content (BMC) and density (BMD) using dual-energy X-ray absorptiometry, and bone turnover biomarkers [osteocalcin (OC) and tartrate-resistant acid phosphatase (TRAP)] using respective ELISA kits. The mRNA expression of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) in spleen was determined by real-time RT-PCR. Neither LPS administration nor GTP levels affected body weight and femoral bone area throughout the study period. Only GTP supplementation resulted in increased urinary epigallocatechin and epicatechin concentrations. LPS administration led to a decrease in femur BMC and BMD, and serum OC levels, but an increase in serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. GTP supplementation resulted in higher values for femur BMC, BMD and serum OC, but lower values for serum TRAP, urinary 8-OHdG and spleen mRNA expression of TNF-α and COX-2 levels. We conclude that GTP mitigates bone loss in a chronic inflammation-induced bone loss model by reducing oxidative stress-induced damage and inflammation.


Assuntos
Doenças Ósseas Metabólicas/prevenção & controle , Modelos Animais de Doenças , Flavonoides/farmacologia , Inflamação/complicações , Fenóis/farmacologia , Chá/química , 8-Hidroxi-2'-Desoxiguanosina , Animais , Sequência de Bases , Disponibilidade Biológica , Peso Corporal/efeitos dos fármacos , Doenças Ósseas Metabólicas/etiologia , Remodelação Óssea , Cromatografia Líquida de Alta Pressão , Doença Crônica , Ciclo-Oxigenase 2/genética , Primers do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Flavonoides/farmacocinética , Fenóis/farmacocinética , Polifenóis , RNA Mensageiro/genética , Ratos , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA