Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(1): 267-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573524

RESUMO

BACKGROUND: The potential prognostic value of extranodal soft tissue metastasis (ESTM) has been confirmed by increasing studies about gastric cancer (GC). However, the gold standard of ESTM is determined by pathologic examination after surgery, and there are no preoperative methods for assessment of ESTM yet. PURPOSE: This multicenter study aimed to develop a deep learning-based radiomics model to preoperatively identify ESTM and evaluate its prognostic value. METHODS: A total of 959 GC patients were enrolled from two centers and split into a training cohort (N = 551) and a test cohort (N = 236) for ESTM evaluation. Additionally, an external survival cohort (N = 172) was included for prognostic analysis. Four models were established based on clinical characteristics and multiphase computed tomography (CT) images for preoperative identification of ESTM, including a deep learning model, a hand-crafted radiomic model, a clinical model, and a combined model. C-index, decision curve, and calibration curve were utilized to assess the model performances. Survival analysis was conducted to explore the ability of stratifying overall survival (OS). RESULTS: The combined model showed good discrimination of the ESTM [C-indices (95% confidence interval, CI): 0.770 (0.729-0.812) and 0.761 (0.718-0.805) in training and test cohorts respectively], which outperformed deep learning model, radiomics model, and clinical model. The stratified analysis showed this model was not affected by patient's tumor size, the presence of lymphovascular invasion, and Lauren classification (p < 0.05). Moreover, the model score showed strong consistency with the OS [C-indices (95%CI): 0.723 (0.658-0.789, p < 0.0001) in the internal survival cohort and 0.715 (0.650-0.779, p < 0.0001) in the external survival cohort]. More interestingly, univariate analysis showed the model score was significantly associated with occult distant metastasis (p < 0.05) that was missed by preoperative diagnosis. CONCLUSIONS: The model combining CT images and clinical characteristics had an impressive predictive ability of both ESTM and prognosis, which has the potential to serve as an effective complement to the preoperative TNM staging system.


Assuntos
Aprendizado Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Radiômica , Estadiamento de Neoplasias , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos
2.
IEEE Rev Biomed Eng ; 17: 118-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37097799

RESUMO

Nasopharyngeal carcinoma is a common head and neck malignancy with distinct clinical management compared to other types of cancer. Precision risk stratification and tailored therapeutic interventions are crucial to improving the survival outcomes. Artificial intelligence, including radiomics and deep learning, has exhibited considerable efficacy in various clinical tasks for nasopharyngeal carcinoma. These techniques leverage medical images and other clinical data to optimize clinical workflow and ultimately benefit patients. In this review, we provide an overview of the technical aspects and basic workflow of radiomics and deep learning in medical image analysis. We then conduct a detailed review of their applications to seven typical tasks in the clinical diagnosis and treatment of nasopharyngeal carcinoma, covering various aspects of image synthesis, lesion segmentation, diagnosis, and prognosis. The innovation and application effects of cutting-edge research are summarized. Recognizing the heterogeneity of the research field and the existing gap between research and clinical translation, potential avenues for improvement are discussed. We propose that these issues can be gradually addressed by establishing standardized large datasets, exploring the biological characteristics of features, and technological upgrades.


Assuntos
Aprendizado Profundo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/tratamento farmacológico , Inteligência Artificial , Radiômica , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/tratamento farmacológico
3.
Gastroenterol Rep (Oxf) ; 10: goac064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457374

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors with high mortality. Accurate diagnosis and treatment decisions for GC rely heavily on human experts' careful judgments on medical images. However, the improvement of the accuracy is hindered by imaging conditions, limited experience, objective criteria, and inter-observer discrepancies. Recently, the developments of machine learning, especially deep-learning algorithms, have been facilitating computers to extract more information from data automatically. Researchers are exploring the far-reaching applications of artificial intelligence (AI) in various clinical practices, including GC. Herein, we aim to provide a broad framework to summarize current research on AI in GC. In the screening of GC, AI can identify precancerous diseases and assist in early cancer detection with endoscopic examination and pathological confirmation. In the diagnosis of GC, AI can support tumor-node-metastasis (TNM) staging and subtype classification. For treatment decisions, AI can help with surgical margin determination and prognosis prediction. Meanwhile, current approaches are challenged by data scarcity and poor interpretability. To tackle these problems, more regulated data, unified processing procedures, and advanced algorithms are urgently needed to build more accurate and robust AI models for GC.

6.
EBioMedicine ; 70: 103522, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34391094

RESUMO

BACKGROUND: Induction chemotherapy (ICT) plus concurrent chemoradiotherapy (CCRT) and CCRT alone were the optional treatment regimens in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. Currently, the choice of them remains equivocal in clinical practice. We aimed to develop a deep learning-based model for treatment decision in NPC. METHODS: A total of 1872 patients with stage T3N1M0 NPC were enrolled from four Chinese centres and received either ICT+CCRT or CCRT. A nomogram was constructed for predicting the prognosis of patients with different treatment regimens using multi-task deep learning radiomics and pre-treatment MR images, based on which an optimal treatment regimen was recommended. Model performance was assessed by the concordance index (C-index) and the Kaplan-Meier estimator. FINDINGS: The nomogram showed excellent prognostic ability for disease-free survival in both the CCRT (C-index range: 0.888-0.921) and ICT+CCRT (C-index range: 0.784-0.830) groups. According to the prognostic difference between treatments using the nomogram, patients were divided into the ICT-preferred and CCRT-preferred groups. In the ICT-preferred group, patients receiving ICT+CCRT exhibited prolonged survival over those receiving CCRT in the internal and external test cohorts (hazard ratio [HR]: 0.17, p<0.001 and 0.24, p=0.02); while the trend was opposite in the CCRT-preferred group (HR: 6.24, p<0.001 and 12.08, p<0.001). Similar results for treatment decision using the nomogram were obtained in different subgroups stratified by clinical factors and MR acquisition parameters. INTERPRETATION: Our nomogram could predict the prognosis of T3N1M0 NPC patients with different treatment regimens and accordingly recommend an optimal treatment regimen, which may serve as a potential tool for promoting personalized treatment of NPC. FUNDING: National Key R&D Program of China, National Natural Science Foundation of China, Beijing Natural Science Foundation, Strategic Priority Research Program of CAS, Project of High-Level Talents Team Introduction in Zhuhai City, Beijing Natural Science Foundation, Beijing Nova Program, Youth Innovation Promotion Association CAS.


Assuntos
Aprendizado Profundo , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , Nomogramas , Planejamento da Radioterapia Assistida por Computador/métodos , Adolescente , Adulto , Idoso , Tomada de Decisão Clínica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA