Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005348

RESUMO

Intra-tumor heterogeneity is an important driver of tumor evolution and therapy response. Advances in precision cancer treatment will require understanding of mutation clonality and subclonal architecture. Currently the slow computational speed of subclonal reconstruction hinders large cohort studies. To overcome this bottleneck, we developed Clonal structure identification through Pairwise Penalization, or CliPP, which clusters subclonal mutations using a regularized likelihood model. CliPP reliably processed whole-genome and whole-exome sequencing data from over 12,000 tumor samples within 24 hours, thus enabling large-scale downstream association analyses between subclonal structures and clinical outcomes. Through a pan-cancer investigation of 7,827 tumors from 32 cancer types, we found that high subclonal mutational load (sML), a measure of latency time in tumor evolution, was significantly associated with better patient outcomes in 16 cancer types with low to moderate tumor mutation burden (TMB). In a cohort of prostate cancer patients participating in an immunotherapy clinical trial, high sML was indicative of favorable response to immune checkpoint blockade. This comprehensive study using CliPP underscores sML as a key feature of cancer. sML may be essential for linking mutation dynamics with immunotherapy response in the large population of non-high TMB cancers.

2.
Front Genet ; 14: 1282824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028629

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by a diverse tumor microenvironment. The heterogeneous cellular composition of PDAC makes it challenging to study molecular features of tumor cells using extracts from bulk tumor. The metabolic features in tumor cells from clinical samples are poorly understood, and their impact on clinical outcomes are unknown. Our objective was to identify the metabolic features in the tumor compartment that are most clinically impactful. Methods: A computational deconvolution approach using the DeMixT algorithm was applied to bulk RNASeq data from The Cancer Genome Atlas to determine the proportion of each gene's expression that was attributable to the tumor compartment. A machine learning algorithm designed to identify features most closely associated with survival outcomes was used to identify the most clinically impactful metabolic genes. Results: Two metabolic subtypes (M1 and M2) were identified, based on the pattern of expression of the 26 most important metabolic genes. The M2 phenotype had a significantly worse survival, which was replicated in three external PDAC cohorts. This PDAC subtype was characterized by net glycogen catabolism, accelerated glycolysis, and increased proliferation and cellular migration. Single cell data demonstrated substantial intercellular heterogeneity in the metabolic features that typified this aggressive phenotype. Conclusion: By focusing on features within the tumor compartment, two novel and clinically impactful metabolic subtypes of PDAC were identified. Our study emphasizes the challenges of defining tumor phenotypes in the face of the significant intratumoral heterogeneity that typifies PDAC. Further studies are required to understand the microenvironmental factors that drive the appearance of the metabolic features characteristic of the aggressive M2 PDAC phenotype.

3.
Nat Struct Mol Biol ; 30(12): 1878-1892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932451

RESUMO

Emerging evidence suggests that cryptic translation beyond the annotated translatome produces proteins with developmental or physiological functions. However, functions of cryptic non-canonical open reading frames (ORFs) in cancer remain largely unknown. To fill this gap and systematically identify colorectal cancer (CRC) dependency on non-canonical ORFs, we apply an integrative multiomic strategy, combining ribosome profiling and a CRISPR-Cas9 knockout screen with large-scale analysis of molecular and clinical data. Many such ORFs are upregulated in CRC compared to normal tissues and are associated with clinically relevant molecular subtypes. We confirm the in vivo tumor-promoting function of the microprotein SMIMP, encoded by a primate-specific, long noncoding RNA, the expression of which is associated with poor prognosis in CRC, is low in normal tissues and is specifically elevated in CRC and several other cancer types. Mechanistically, SMIMP interacts with the ATPase-forming domains of SMC1A, the core subunit of the cohesin complex, and facilitates SMC1A binding to cis-regulatory elements to promote epigenetic repression of the tumor-suppressive cell cycle regulators encoded by CDKN1A and CDKN2B. Thus, our study reveals a cryptic microprotein as an important component of cohesin-mediated gene regulation and suggests that the 'dark' proteome, encoded by cryptic non-canonical ORFs, may contain potential therapeutic or diagnostic targets.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Animais , Humanos , Fases de Leitura Aberta/genética , Sistemas CRISPR-Cas/genética , Neoplasias/genética , Proteoma/genética
4.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37604640

RESUMO

BACKGROUND: TP53, the most mutated gene in solid cancers, has a profound impact on most hallmarks of cancer. Somatic TP53 mutations occur in high frequencies in head and neck cancers, including oral squamous cell carcinoma (OSCC). Our study aims to understand the role of TP53 gain-of-function mutation in modulating the tumor immune microenvironment (TIME) in OSCC. METHODS: Short hairpin RNA knockdown of mutant p53R172H in syngeneic oral tumors demonstrated changes in tumor growth between immunocompetent and immunodeficient mice. HTG EdgeSeq targeted messenger RNA sequencing was used to analyze cytokine and immune cell markers in tumors with inactivated mutant p53R172H. Flow cytometry and multiplex immunofluorescence (mIF) confirmed the role of mutant p53R172H in the TIME. The gene expression of patients with OSCC was analyzed by CIBERSORT and mIF was used to validate the immune landscape at the protein level. RESULTS: Mutant p53R172H contributes to a cytokine transcriptome network that inhibits the infiltration of cytotoxic CD8+ T cells and promotes intratumoral recruitment of regulatory T cells and M2 macrophages. Moreover, p53R172H also regulates the spatial distribution of immunocyte populations, and their distribution between central and peripheral intratumoral locations. Interestingly, p53R172H-mutated tumors are infiltrated with CD8+ and CD4+ T cells expressing programmed cell death protein 1, and these tumors responded to immune checkpoint inhibitor and stimulator of interferon gene 1 agonist therapy. CIBERSORT analysis of human OSCC samples revealed associations between immune cell populations and the TP53R175H mutation, which paralleled the findings from our syngeneic mouse tumor model. CONCLUSIONS: These findings demonstrate that syngeneic tumors bearing the TP53R172H gain-of-function mutation modulate the TIME to evade tumor immunity, leading to tumor progression and decreased survival.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Microambiente Tumoral , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/genética , Linfócitos T CD8-Positivos , Citocinas , Modelos Animais de Doenças , Mutação com Ganho de Função , Neoplasias Bucais/genética , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/genética
6.
Nat Biotechnol ; 40(11): 1624-1633, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697807

RESUMO

Single-cell RNA sequencing studies have suggested that total mRNA content correlates with tumor phenotypes. Technical and analytical challenges, however, have so far impeded at-scale pan-cancer examination of total mRNA content. Here we present a method to quantify tumor-specific total mRNA expression (TmS) from bulk sequencing data, taking into account tumor transcript proportion, purity and ploidy, which are estimated through transcriptomic/genomic deconvolution. We estimate and validate TmS in 6,590 patient tumors across 15 cancer types, identifying significant inter-tumor variability. Across cancers, high TmS is associated with increased risk of disease progression and death. TmS is influenced by cancer-specific patterns of gene alteration and intra-tumor genetic heterogeneity as well as by pan-cancer trends in metabolic dysregulation. Taken together, our results indicate that measuring cell-type-specific total mRNA expression in tumor cells predicts tumor phenotypes and clinical outcomes.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Heterogeneidade Genética , Genômica , RNA Mensageiro/genética , Progressão da Doença
7.
iScience ; 25(7): 104551, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35747385

RESUMO

Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the ß mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by ß mutations.

9.
PPAR Res ; 2021: 5525091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054937

RESUMO

Our previous study showed that the upregulation of peroxisome proliferator-activated receptor gamma (PPARG) could promote chemosensitivity of hypopharyngeal squamous cell carcinoma (HSCC) in chemotherapeutic treatments. Here, we acquired two more independent expression data of PPARG to validate the expression levels of PPARG in chemotherapy-sensitive patients (CSP) and its individualized variations compared to chemotherapy-non-sensitive patients (CNSP). Our results showed that overall PPARG expression was mildly downregulated (log fold change = -0.55; p value = 0.42; overexpression in three CSPs and reduced expression in four CSPs), which was not consistent with previous results (log fold change = 0.50; p = 0.22; overexpression in nine CSPs and reduced expression in three CSPs). Both studies indicated that PPARG expression variation was significantly associated with the Tumor-Node-Metastasis (TNM) stage (p = 7.45e - 7 and 6.50e - 4, for the first and second studies, respectively), which was used as one of the predictors of chemosensitivity. The new dataset analysis revealed 51 genes with significant gene expression changes in CSPs (LFC > 1 or <-1; p value < 0.01), and two of them (TMEM45A and RBP1) demonstrated strong coexpression with PPARG (Pearson correlation coefficient > 0.6 or <-0.6). There were 21 significant genes in the data from the first study, with no significant association with PPARG and no overlap with the 51 genes revealed in this study. Our results support the connection between PPARG and chemosensitivity in HSCC tumor cells. However, significant PPARG variation exists in CSPs, which may be influenced by multiple factors, including the TNM stage.

10.
Nat Commun ; 11(1): 1008, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081846

RESUMO

Limited clinical activity has been seen in osteosarcoma (OS) patients treated with immune checkpoint inhibitors (ICI). To gain insights into the immunogenic potential of these tumors, we conducted whole genome, RNA, and T-cell receptor sequencing, immunohistochemistry and reverse phase protein array profiling (RPPA) on OS specimens from 48 pediatric and adult patients with primary, relapsed, and metastatic OS. Median immune infiltrate level was lower than in other tumor types where ICI are effective, with concomitant low T-cell receptor clonalities. Neoantigen expression in OS was lacking and significantly associated with high levels of nonsense-mediated decay (NMD). Samples with low immune infiltrate had higher number of deleted genes while those with high immune infiltrate expressed higher levels of adaptive resistance pathways. PARP2 expression levels were significantly negatively associated with the immune infiltrate. Together, these data reveal multiple immunosuppressive features of OS and suggest immunotherapeutic opportunities in OS patients.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Fenômenos Imunogenéticos , Masculino , Pessoa de Meia-Idade , Mutação , Osteossarcoma/secundário , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Sequenciamento Completo do Genoma , Adulto Jovem
11.
Sci Rep ; 9(1): 10863, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350445

RESUMO

Differential network analysis investigates how the network of connected genes changes from one condition to another and has become a prevalent tool to provide a deeper and more comprehensive understanding of the molecular etiology of complex diseases. Based on the asymptotically normal estimation of large Gaussian graphical model (GGM) in the high-dimensional setting, we developed a computationally efficient test for differential network analysis through testing the equality of two precision matrices, which summarize the conditional dependence network structures of the genes. Additionally, we applied a multiple testing procedure to infer the differential network structure with false discovery rate (FDR) control. Through extensive simulation studies with different combinations of parameters including sample size, number of vertices, level of heterogeneity and graph structure, we demonstrated that our method performed much better than the current available methods in terms of accuracy and computational time. In real data analysis on lung adenocarcinoma, we revealed a differential network with 3503 nodes and 2550 edges, which consisted of 50 clusters with an FDR threshold at 0.05. Many of the top gene pairs in the differential network have been reported relevant to human cancers. Our method represents a powerful tool of network analysis for high-dimensional biological data.


Assuntos
Adenocarcinoma de Pulmão/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Modelos Estatísticos , Algoritmos , Correlação de Dados , Confiabilidade dos Dados , Humanos , Distribuição Normal , RNA-Seq
12.
iScience ; 9: 451-460, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30469014

RESUMO

Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixtures of more than two components. DeMixT implements an iterated conditional mode algorithm and a novel gene-set-based component merging approach to improve accuracy. In a series of experimental validation studies and application to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important step toward linking tumor transcriptomic data with clinical outcomes. An R package, scripts, and data are available: https://github.com/wwylab/DeMixTallmaterials.

13.
IEEE/ACM Trans Comput Biol Bioinform ; 14(5): 1147-1153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28113675

RESUMO

In this study, in order to take advantage of complementary information from different types of data for better disease status diagnosis, we combined gene expression with DNA methylation data and generated a fused network, based on which the stages of Kidney Renal Cell Carcinoma (KIRC) can be better identified. It is well recognized that a network is important for investigating the connectivity of disease groups. We exploited the potential of the network's features to identify the KIRC stage. We first constructed a patient network from each type of data. We then built a fused network based on network fusion method. Based on the link weights of patients, we used a generalized linear model to predict the group of KIRC subjects. Finally, the group prediction method was applied to test the power of network-based features. The performance (e.g., the accuracy of identifying cancer stages) when using the fused network from two types of data is shown to be superior to that when using two patient networks from only one data type. The work provides a good example for using network based features from multiple data types for a more comprehensive diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias Renais , Biomarcadores Tumorais/análise , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Humanos , Neoplasias Renais/classificação , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA