Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(2): 180-194, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051215

RESUMO

Globally, hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related death. We previously identified an immune evasion pathway whereby tumor cells produce retinoic acid (RA) to promote differentiation of intratumoral monocytes into protumor macrophages. Retinaldehyde dehydrogenase 1 (RALDH1), RALDH2, and RALDH3 are the three isozymes that catalyze RA biosynthesis. In this study, we have identified RALDH1 as the key driver of RA production in HCC and demonstrated the efficacy of RALDH1-selective inhibitors (Raldh1-INH) in suppressing RA production by HCC cells. Raldh1-INH restrained tumor growth in multiple mouse models of HCC by reducing the number and tumor-supporting functions of intratumoral macrophages as well as increasing T-cell infiltration and activation within tumors. Raldh1-INH also displayed favorable pharmacokinetic, pharmacodynamic, and toxicity profiles in mice thereby establishing them as promising new drug candidates for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Retinal Desidrogenase/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Tretinoína/farmacologia , Tretinoína/metabolismo , Aldeído Oxirredutases/metabolismo
2.
ACS Nano ; 17(15): 14424-14441, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498878

RESUMO

High expression of programmed death ligand 1 (PD-L1) and strong immune evasion ability of the tumor microenvironment (TME) are maintained through mutual regulation between different immune and stromal cells, which causes obstructions for cancer immunotherapy, especially immunosuppressive M2-like phenotype tumor-associated macrophages (TAMs). Repolarization of TAMs to the M1-like phenotype could secrete proinflammatory cytokines and reverse the immunosuppressive state of the TME. However, we found that reactive oxygen species (ROS) generated by repolarized TAMs could be a double-edged sword: ROS cause a stronger suppressive effect on CD8 T cells through an increased proportion of apoptotic regulatory T (Treg) cells. Thus, simply repolarizing TAMs while ignoring the suppressed function of T cells is insufficient for generating adequate antitumor immunity. Accordingly, we engineered multifunctional redox-responsive nanoplatform NPs (M+C+siPD-L1) with Toll-like receptor agonist (M), catalase (C), and siPD-L1 encased for coregulation of both TAMs and T cells to maximize cancer immunotherapy. Our results demonstrated that NPs (M+C+siPD-L1) showed superior biocompatibility and intratumor accumulation. For in vitro experiments, NPs (M+C+siPD-L1) simultaneously repolarized TAMs to the M1-like phenotype, hydrolyzed extra ROS, knocked down the expression of PD-L1 on tumor cells, and rescued the function of CD8 T cells suppressed by Treg cells. In both orthotopic Hepa1-6 and 4T1 tumor-bearing mouse models, NPs (M+C+siPD-L1) could effectively evoke active systemic antitumor immunity and inhibit tumor growth. The combination of repolarizing TAMs, hydrolyzing extra ROS, and knocking down the expression of PD-L1 proves to be a synergistic approach in cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Camundongos , Animais , Antígeno B7-H1/genética , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Imunoterapia , Imunossupressores/farmacologia , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Acta Biomater ; 157: 500-510, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535568

RESUMO

Angiogenesis inhibition has become a promising therapeutical strategy for cancer treatment. Current clinical anti-angiogenesis treatment includes antibodies against vascular endothelial growth factor (VEGF) or VEGF receptor, fusion proteins with high affinity to VEGF receptor, and tyrosine kinase inhibitors of VEGF receptor. However, current treatments are prone to systemic toxicity or acquiring drug resistance. A natural bioactive lipid 1,2-dipalmitoyl-sn­glycero-3-phosphate (dipalmitoyl phosphatidic acid, DPPA) was reported to exhibit anti-angiogenic and anti-tumoral activity. However, the hydrophobic property of DPPA largely restricted its clinical use, while systemic infusion of free DPPA could result in undesirable side effects. Herein, we successfully developed DPPA-based lipid-nanoparticles (DPPA-LNPs) which turns the "therapeutic payload into nanocarrier". This strategy could improve on DPPA's hydrophiliciy, thereby facilitating its systemic administration. . DPPA-LNPs not only retained the therapeutic anti-angiogenic and anti-tumoral bioactivity of parental DPPA, but also greatly improved its tumor targeting ability via enhanced permeability and retention (EPR) effect. This strategy not only eliminates the limitation of drug encapsulation rate, toxicity of the delivery vehicle; but also enhances DPPA bioacvtity in vitro and in vivo. Systemic administration of DPPA-LNPs significantly suppressed the blood vessel formation and tumor growth of triple negative breast cancer and liver cancer growth on both xenograft tumor models. STATEMENT OF SIGNIFICANCE: This is the first-in-kind self-therapeutic inherent lipid to be made into a nanocarrier, with inherent anti-angiogenic and anti-tumor properties. DPPA nanocarrier is fully natural, fully compatible with minimal systemic toxicity. DPPA nanocarrier can accumulate at high concentration at tumor via EPR effect, exerting both anti-angiogenic and anti-tumor effects in vivo. DPPA nanocarrier could be used to encapsulate biologics or small molecules for synergistic anti-cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Linhagem Celular Tumoral , Lipídeos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neovascularização Patológica/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais
4.
Biomaterials ; 280: 121264, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823884

RESUMO

Pancreatic cancer (PAC) is one of the most lethal malignant neoplasms with poor prognosis and high mortality. Emerging evidence has revealed that abnormal tumor lipid metabolism and tumor-associated macrophages (TAMs) significantly contribute to PAC development and progression. Therefore, concurrently reprogramming tumor lipid metabolism and regulating TAMs function could be a promising strategy for effective PAC therapy. Herein, we identified an important enzyme catabolizing lipids (monoacylglycerol lipase, MGLL) and a key receptor regulating macrophage phenotype (endocannabinoid receptor-2, CB-2) that are over-expressed in PAC cells and on TAMs, respectively. Based on this finding, we developed a reduction-responsive poly (disulfide amide) (PDSA)-based nanoplatform for systemic co-delivery of MGLL siRNA (siMGLL) and CB-2 siRNA (siCB-2). This nanoplatform could utilize its reduction-responsive characteristic to rapidly release siRNA for efficient silencing of MGLL and CB-2, inducing concurrent suppression of free fatty acids (FFAs) generation in PAC cells and repolarization of TAMs into tumor-inhibiting M1-like phenotype. With this suppressed FFAs generation to inhibit nutrient supply for tumor cells and repolarized TAMs to secrete tumoricidal cytokines such as TNF-α and IL-12, a combinational anticancer effect could be achieved in both xenograft and orthotopic PAC tumor models.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Pancreáticas , Humanos , Imunoterapia , Macrófagos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Interferência de RNA , Microambiente Tumoral
5.
Int J Nanomedicine ; 16: 5909-5921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475756

RESUMO

Since the discovery of RNA interference (RNAi), RNAi technology has rapidly developed into an efficient tool for post-transcriptional gene silencing, which has been widely used for clinical or preclinical treatment of various diseases including cancer. Small interfering RNA (siRNA) is the effector molecule of RNAi technology. However, as polyanionic macromolecules, naked siRNAs have a short circulatory half-life (<15 min) and is rapidly cleared by renal filtration, which greatly hinders their clinical application. Furthermore, the anionic and macromolecular characteristics of naked siRNAs impede their readiness to cross the cell membrane and therefore delivery vehicles are required to facilitate the cellular uptake and cytosolic delivery of naked siRNAs. In the past decade, numerous nanoparticles (NPs) such as liposomes have been employed for in vivo siRNA delivery, which have achieved favorable therapeutic outcomes in clinical disease treatment. In particular, because tumor microenvironment (TME) or tumor cells show several distinguishing biological/endogenous factors (eg, pH, enzymes, redox, and hypoxia) compared to normal tissues or cells, much attention has recently paid to design and construct TME-responsive NPs for multistaged siRNA delivery, which can respond to biological stimuli to achieve efficient in vivo gene silencing and better anticancer effect. In this review, we summarize recent advances in TME-responsive siRNA delivery systems, especially multistage delivery NPs, and discuss their design principles, functions, effects, and prospects.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , Microambiente Tumoral
6.
Pathol Oncol Res ; 27: 582443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257530

RESUMO

The expression of Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) has been reported to be dysregulated in non-small cell lung carcinoma, especially in lung adenocarcinoma (LUAD). Therefore, we aimed to investigate the functional and prognostic roles of PELP1 in LUAD in this study. We first immunolocalized PELP1 in 76 cases of LUAD and 17 non-pathological or tumorous lung (NTL) tissue specimens and correlated the findings with the clinicopathological parameters of the patients. We then performed in vitro analysis including MTT, flow cytometry, wound healing, and transwell assays in order to further explore the biological roles of PELP1 in 17-ß-estradiol (E2) induced cell proliferation, migration, and invasion of LUAD cells. We subsequently evaluated the prognostic significance of PELP1 in LUAD patients using the online survival analysis tool Kaplan-Meier Plotter. The status of PELP1 immunoreactivity in LUAD was significantly higher than that in the NTL tissues and significantly positively correlated with less differentiated features of carcinoma cells, positive lymph node metastasis, higher clinical stage as well as the status of ERα, ERß, and PCNA. In vitro study did reveal that E2 promoted cell proliferation and migration and elevated PELP1 protein level in PELP1-high A549 and H1975 cells but not in PELP1-low H-1299 cells. Knock down of PELP1 significantly attenuated E2 induced cell proliferation, colony formation, cell cycle progress as well as migration and invasion of A549 and H1975 cells. Kaplan-Meier Plotter revealed that LUAD cases harboring higher PELP1 expression had significantly shorter overall survival. In summary, PELP1 played a pivotal role in the estrogen-induced aggressive transformation of LUAD and could represent adverse clinical outcome of the LUAD patients.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proteínas Correpressoras/metabolismo , Estradiol/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Correpressoras/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Fatores de Transcrição/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32548111

RESUMO

Macrophages are mainly divided into two phenotypes: M1-like (anti-tumoral, pro-inflammatory) and M2-like (pro-tumoral, anti-inflammatory). The more abundant M2-like phenotype of tumor associated macrophages (TAMs) has been associated with poor prognosis in various cancers, therefore, many studies have been carried out to modulate TAMs to change from an M2 to M1-like phenotype as an effective way to suppress tumor growth. Previous study indicated that the FDA-approved Ferumoxytol is an iron oxide nanoparticle that has intrinsic tumor inhibiting properties and is accompanied by the increased presence of the pro-inflammatory, anti-tumoral M1-like phenotype. Intrigued by this finding, we hypothesize that differently charged super-paramagnetic iron oxide nanoparticles (SPIONs) would have preferential differences in polarizing macrophages. Herein, we report that differently charged SPIONs have distinct preferences in the modulation of TAM phenotypes. Positively charged SPION (S+) had the highest cellular uptake and highest macrophage polarization effect. Interestingly, although negatively charged SPION (S-) should present charge-charge repulsion with cell membranes, they showed considerably high uptake in vitro, nevertheless presenting the highest cellular toxicity. Neutrally charged SPION (SN) showed minimal uptake and cellular toxicity in vitro. Both S+ and S- could effectively re-polarize M2-like macrophages toward M1-like macrophages in vitro, and significantly increased the Fenton effect and chemotaxis of macrophages. When macrophages pre-treated with these SPIONs were co-injected with tumor cells to obtain a tumor xenograft, S+ and S- treated macrophages significantly induced tumor retardation, indicating the successful repolarization of tumor macrophages by these SPIONs. Taken together, we provide an insight on the importance of SPION charge in immunomodulation of macrophages.

8.
Front Pharmacol ; 11: 539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425785

RESUMO

The research of lipid nanoparticles (LNPs) has been ongoing for more than three decades, and more research are still being carried out today. Being the first Food and Drug Administration (FDA)-approved nanomedicine, LNPs not only provide various advantages, but also display some unique properties. The unique lipid bilayer structure of LNPs allows it to encapsulate both fat-soluble and water-soluble molecules, hence enabling a wide range of possibilities for the delivery of therapeutic agents with different physical and chemical properties. The ultra-small size of some LNPs confers them the ability to cross the blood brain barrier (BBB), thus obtaining superiority in the treatment of diseases of the central nervous system (CNS). The ability of tumor targeting is one of the basic requirements to be an excellent delivery system, where the LNPs have to reach the interior of the tumor. Factors that influence tumor extravasation and the permeability of LNPs are size, surface charge, lipid composition, and shape. The effect of size, surface charge, and lipid composition on the cellular uptake of LNPs is no longer recent news, while increasing numbers of researchers are interested in the effect of shape on the uptake of LNPs and its consequential effects. In our study, we prepared three lipid nanostars (LNSs) by mixing phosphatidylcholine (PC) with different backbone lengths (C14:C4 or C16:C6 or C18:C8) at a 3:1 ratio. Although several star-shaped nanocarriers have been reported, these are the first reported star-shaped LNPs. These LNSs were proven to be safe, similar in size with their spherical controls (~100 nm), and stable at 37°C. The release rate of these LNSs are inversely related to the length of the lipid backbone. Most importantly, these LNSs exhibited greatly enhanced cellular uptake and in vivo tumor extravasation compared with their spherical controls. Based on the different uptake and pharmacokinetic characteristics displayed by these LNSs, numerous route formulations could be taken into consideration, such as via injection or transdermal patch. Due to their excellent cellular uptake and in vivo tumor accumulation, these LNSs show exciting potential for application in cancer therapy.

9.
Angew Chem Int Ed Engl ; 59(15): 6249-6252, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017368

RESUMO

Structural morphology is the key parameter for efficacy of nanomedicine. To date, lipid-based nanomaterial has been the most widely used material in nanomedicine and many other biomedical applications. However, to the best of our knowledge, there has not been an in-depth or systematic investigation of the structure-function relationship of lipid-based nanostructures. In this report, we investigated the formulation of novel lipid-based nanostructures via simple tuning of lipid combinations. To prove this concept, we used a combination of various ratios of simple and common phospholipids with different chain lengths (14-carbon chain DMPC: 6-carbon chain DHPC) to find out whether a myriad of novel lipid nanostructures could be obtained. Interestingly, many combinations resulted in distinct lipid nanostructures. Drug encapsulation tests confirmed that they are able to load large amounts of drugs for biological application. In vivo anti-tumor efficacy revealed that certain lipid nanostructures possessed superior tumor retardation effects.


Assuntos
Portadores de Fármacos/química , Engenharia , Nanoestruturas/química , Fosfolipídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos
10.
Chin Med ; 13: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364385

RESUMO

BACKGROUND: Compounds with the ability to scavenge reactive oxygen species (ROS) and inhibit tyrosinase may be useful for the treatment and prevention from ROS-related diseases. The number and location of phenolic hydroxyl of the flavonoids will significantly influence the inhibition of tyrosinase activity. Phenolic hydroxyl is indispensable to the antioxidant activity of flavonoids. Isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin have respectively one, two, three, four, or five phenolic hydroxyls. The different molecular structures with the similar structure to l-3,4-dihydroxyphenylalanine (l-DOPA) were expected to the different antityrosinase and antioxidant activities. METHODS: This investigation tested the antityrosinase activity, the inhibition constant, and inhibition type of isoeugenol, shikonin, baicalein, rosmarinic acid, and dihydromyricetin. Molecular docking was examined by the Discovery Studio 2.5 (CDOCKER Dock, Dassault Systemes BIOVIA, USA). This experiment also examined the antioxidant effects of the five compounds on supercoiled pBR322 plasmid DNA, lipid peroxidation in rat liver mitochondria in vitro, and DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro. RESULTS: The compounds exhibited good antityrosinase activities. Molecular docking results implied that the compounds could interact with the amino acid residues in the active site center of antityrosinase. These compounds also exhibited antioxidant effects on DPPH, ABTS, hydroxyl, or superoxide free radical scavenging activity in vitro, lipid peroxidation in rat liver mitochondria induced by Fe2+/vitamin C system in vitro, and supercoiled pBR322 plasmid DNA. The activity order is isoeugenol < shikonin < baicalein < rosmarinic acid < dihydromyricetin. The results showed the compounds with more phenolic hydroxyls have more antioxidant and antityrosinase activities. CONCLUSION: This was the first study of molecular docking for modeling the antityrosinase activity of compounds. This was also the first study of the protective effects of compounds on supercoiled pBR322 plasmid DNA, the lipid peroxidation inhibition activity in liver mitochondria. These results suggest that the compounds exhibited antityrosinase and antioxidant activities may be useful in skin pigmentation and food additives.

11.
Proc Natl Acad Sci U S A ; 113(40): E5792-E5801, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647919

RESUMO

There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPKp42/44 The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogel-treated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance re-epithelialization and the formation of granulation tissue.


Assuntos
Diabetes Mellitus Experimental/patologia , Hidrogéis/farmacologia , Peptídeos/farmacologia , Reepitelização , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/farmacologia , Colágeno/farmacologia , Humanos , Peróxido de Hidrogênio/toxicidade , Proteínas Imobilizadas/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Peptídeos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reepitelização/efeitos dos fármacos
12.
BMC Cancer ; 15: 699, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472563

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is associated with an aggressive clinical course due to the lack of therapeutic targets. Therefore, identifying reliable prognostic biomarkers and novel therapeutic targets for patients with TNBC is required. Proline, glutamic acid, leucine rich protein 1 (PELP1) is a novel steroidal receptor co-regulator, functioning as an oncogene and its expression is maintained in estrogen receptor (ER) negative breast cancers. PELP1 has been proposed as a prognostic biomarker in hormone-related cancers, including luminal-type breast cancers, but its significance in TNBC has not been studied. METHODS: PELP1 immunoreactivity was evaluated using immunohistochemistry in 129 patients with TNBC. Results were correlated with clinicopathological variables including patient's age, tumor size, lymph node stage, tumor grade, clinical stage, histological type, Ki-67 LI, as well as clinical outcome of the patients, including disease-free survival (DFS) and overall survival (OS). RESULTS: PELP1 was localized predominantly in the nuclei of carcinoma cells in TNBC. With the exception of a positive correlation between PELP1 protein expression and lymph node stage (p = 0.027), no significant associations between PELP1 protein expression and other clinicopathological variables, including DFS and OS, were found. However, when PELP1 and Ki-67 LI were grouped together, we found that patients in the PELP1/Ki-67 double high group (n = 48) demonstrated significantly reduced DFS (p = 0.005, log rank test) and OS (p = 0.002, log rank test) than others (n = 81). Multivariable analysis supported PELP1/Ki-67 double high expression as an independent prognostic factor in patients with TNBC, with an adjusted hazard ratio of 2.020 for recurrence (95 % CL, 1.022-3.990; p = 0.043) and of 2.380 for death (95 % CL, 1.138-4.978; p = 0.021). CONCLUSIONS: We found that evaluating both PELP1 and Ki-67 expression in TNBC could enhance the prognostic sensitivity of the two biomarkers. Therefore, we propose that PELP1/Ki-67 double high expression in tumors is an independent prognostic factor for predicting a poor outcome for patients with TNBC.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas Correpressoras/biossíntese , Antígeno Ki-67/biossíntese , Prognóstico , Fatores de Transcrição/biossíntese , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Proteínas Correpressoras/genética , Intervalo Livre de Doença , Feminino , Ácido Glutâmico/metabolismo , Humanos , Antígeno Ki-67/genética , Pessoa de Meia-Idade , Prolina/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 43(5): 683-6, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-23230738

RESUMO

OBJECTIVE: To evaluate the expressions and significances of CD147, OPN and MMP-2 in oral squamous cell carcinoma (OSCC). METHODS: The expressions of CD147, OPN and MMP-2 were detected by immunohistochemical method (SP) in 35 cases of ()SCC. The relationships between the expressions of CD147, OPN and MMP-2 and clinic histopathologic parameters of OSCC were analyzed. RESULTS: The expression rates of CD147, OPN and MMP-2 in OSCC tissues were 65.71%, 71.43% and 68.57% respectively. The expressions of CD147, OPN and MMP-2 were positively correlated with tumor histopathologic type, clinical stage and lymph node metastasis (P < 0.05), but not correlated with age, gender and the location of tumor (P > 0.05). The positive correlations were found among the expressions of CD147, OPN and MMP-2 (MMP-2 and CD147, r = 0. 653; MMP-2 and OPN, r = 0.540; CD147 and OPN, r = 0.381; P < 0.05). CONCLUSION: The expressions of CD147, OPN and MMP-2 increase in OSCC and may be the potential predictor of the malignant degree of OSCC.


Assuntos
Basigina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias Bucais/metabolismo , Osteopontina/metabolismo , Idoso , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Estadiamento de Neoplasias
14.
Mol Neurodegener ; 5: 42, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20977765

RESUMO

Overexpression of alpha-synuclein (α-SYN), a protein which plays an important role in the pathogenesis of Parkinson's disease (PD), triggers microglial activation and adaptive immune responses, and leads to neurodegeneration of dopaminergic (DA) neurons. We hypothesized a link between the humoral adaptive immune response and microglial activation in α-SYN induced neurodegeneration. To test this hypothesis, we employed adeno-associated virus serotype 2 (AAV2) to selectively over-express human α-SYN in the substantia nigra (SN) of wild-type mice and FcγR-/- mice, which lack high-affinity receptors for IgG. We found that in wild-type mice, α-SYN induced the expression of NF-κB p65 and pro-inflammatory molecules. In FcγR-/- mice, NF-κB activation was blocked and pro-inflammatory signaling was reduced. Microglial activation was examined using immunohistochemistry for gp91PHOX. At four weeks, microglia were strongly activated in wild-type mice, while microglial activation was attenuated in FcγR-/- mice. Dopaminergic neurodegeneration was examined using immunohistochemistry for tyrosine hydroxylase (TH) and unbiased stereology. α-SYN overexpression led to the appearance of dysmorphic neurites, and a loss of DA neurons in the SN in wild-type animals, while FcγR-/- mice did not exhibit neuritic change and were protected from α-SYN-induced neurodegeneration 24 weeks after injection. Our results suggest that the humoral adaptive immune response triggered by excess α-SYN plays a causative role in microglial activation through IgG-FcγR interaction. This involves NF-κB signaling, and leads to DA neurodegeneration. Therefore, blocking either FcγR signaling or specific intracellular signal transduction events downstream of FcγR-IgG interaction, such as NF-κB activation, may be viable therapeutic strategies in PD.

15.
J Neuropathol Exp Neurol ; 67(12): 1149-58, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19018246

RESUMO

Microglial activation and adaptive immunity have been implicated in the neurodegenerative processes in Parkinson disease. It has been proposed that these responses may be triggered by modified forms of alpha-synuclein (alpha-SYN), particularly nitrated species, which are released as a consequence of dopaminergic neurodegeneration. To examine the relationship between alpha-SYN, microglial activation, and adaptive immunity, we used a mouse model of Parkinson disease in which human alpha-SYN is overexpressed by a recombinant adeno-associated virus vector, serotype 2 (AAV2-SYN); this overexpression leads to slow degeneration of dopaminergic neurons. Microglial activation and components of the adaptive immune response were assessed using immunohistochemistry; quantitative polymerase chain reaction was used to examine cytokine expression. Four weeks after injection, there was a marked increase in CD68-positive microglia and greater infiltration of B and T lymphocytes in the substantia nigra pars compacta of the AAV2-SYN group than in controls. At 12 weeks, CD68 staining declined, but B- and T-cell infiltration persisted. Expression of proinflammatory cytokines was enhanced, whereas markers of alternative activation (i.e. arginase I and interleukins 4 and 13) were not altered. Increased immunoreactivity for mouse immunoglobulin was detected at all time points in the AAV2-SYN animals. These data show that overexpression of alpha-SYN alone, in the absence of overt neurodegeneration, is sufficient to trigger neuroinflammation with both microglial activation and stimulation of adaptive immunity.


Assuntos
Encéfalo/imunologia , Fenômenos do Sistema Imunitário/imunologia , Ativação Linfocitária/imunologia , Microglia/imunologia , Doença de Parkinson/imunologia , alfa-Sinucleína/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Quimiotaxia de Leucócito/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Vetores Genéticos , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Substância Negra/imunologia , Substância Negra/patologia , Substância Negra/fisiopatologia , Transfecção , alfa-Sinucleína/genética
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(8): 1905-9, 2008 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-18975830

RESUMO

The interactions of genistein (GEN), genistein glucoside (GENG) and genistein 7,4'-di-O-beta-D- glucoside(GEND) with calf thymus DNA (ctDNA) in Tris (pH 7.2) buffer were investigated by UV spectra, fluorescence spectra and viscosity. From the absorption titration experiments, no obvious red shifts were found, but the notable hypochromicities were observed. The pi-->pi* transitions of GEN at 262 nm showed a 10% decrease in intensity at [GEN]/[DNA] = 2, and for the GENG and GEND, the decreases were 24.8% and 18% at 260 and 258 nm, respectively. These results indicated that there were intercalations between these compounds and ctDNA, involving a strong pi-stacking interacting. The hypochromism of the two glucosides was bigger than that of GEN, which suggested that the two glucosides intercalated deeply into the DNA base pairs. The emission intensity of DNA-EB system at 600 nm decreased remarkably with increasing the three compounds, indicating that these compounds could intercalate into DNA and replace EB from the DNA-EB system. And at 25 and 37 degrees C, the fluorescence quenching curves of these compounds with DNA-EB system were not linear curves. According to the classical Stern-Volmer equation, it was not single static or dynamic quenching model, so there would be hydrogen bonding besides intercalation. Viscosity experiments were carried out by an Ubbelodhe viscometer at (20.0 +/- 0.1) degrees C. The relative viscosity of ctDNA increased steadily with increasing these compounds. The results clearly showed that these compounds could intercalate between DNA base pairs, causing an extension of the helix, and thus increased the viscosity of DNA. And because of the greatest increase in viscosity of the DNA, the interaction of GENG with DNA was the strongest, followed by GEND, and then GEN. The results were consistent with the above spectral results. These results suggested that genistein and its glucosides could bind to ctDNA partly by intercalation and hydrogen bonding mode, and the binding ability to ctDNA followed the order of GENG > GEND > GEN from which, the authors speculated that 7 or 4'-O-glycosylation modification maybe an effective way to improve medicinal activity of genistein, and its glucoside modified derivatives may be a promising candidate for anticancer drug, which deserves further research.


Assuntos
DNA/química , Genisteína/química , Glucosídeos/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Animais , Sítios de Ligação , Bovinos , Indicadores e Reagentes , Modelos Químicos , Conformação de Ácido Nucleico , Relação Estrutura-Atividade
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(7): 1587-91, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18844166

RESUMO

The interaction of the Cr(III) complex of genistein (GEN-Cr) with calf thymus DNA (ctDNA) in Tris (pH 7.2) buffer was investigated using UV spectra, DNA melting, fluorescence spectra and viscosity. From the absorption titration experiment, no obvious red shift was found, but the notable hypochromicities were observed. When C(DNA)/C(GEN-Cr) = 3, the pi-pi* transitions of the complex at 272 nm showed a decrease in intensity of 29.1%, which indicated that there was remarkable intercalation between complex and DNA base pairs, involving a strong pi-stacking interacting between them. The binding constant for the complex was K = 1.9 x 10(5) mol x L(-1). From the melting curves of ctDNA in the absence and presence of the complex, the melting temperature of ctDNA was found to increase by 5.5 degrees C from 74 to 79.5 degrees C, owing to the increased stability of the helix in the presence of the complex that was intercalated into the double helix. The complex could emit weak luminescence in Tris buffer. The emission intensity of the complex at 340 nm increased steadily with the addition of ctDNA. The result suggested that the complex got into a hydrophobic environment inside the DNA and avoided the effect of solvent water molecules. The strong interaction of the complex and ctDNA also resulted in greatly enhanced intensity of the resonance light scattering spectra. The emission intensity of DNA-EB system at 600 nm decreased remarkably with increasing the complex concentration, which indicated that the complex could be intercalated into DNA and replace EB from the DNA-EB system. According to the classical Stern-Volmer equation, the quenching plots at 25 and 37 degrees C both appeared approximately linear. These results showed that there was one predominant quenching style in this process. Viscosity experiments were carried out by an Ubbelodhe viscometer at 20.0 (+/- 0.1) degrees C. The relative viscosity of ctDNA increased steadily with the increased in the complex. The result clearly showed that the complex could be intercalated between DNA base pairs, causing an extension of the helix, and thus increased the viscosity of DNA. The results above indicated that there is a relatively strong interaction between the GEN-Cr complex and ctDNA, and the complex could bind ctDNA mainly by intercalation. The research suggested that the GEN-Cr complex may be a promising candidate for anticancer, which deserves further research.


Assuntos
Cromo/química , DNA/química , Genisteína/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Viscosidade
18.
Mol Biol Rep ; 35(3): 413-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17530439

RESUMO

Ginkgo biloba contains terpene triclactones of high pharmaceutical value such as ginkgolides. 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate (HMBPP) reductase (HDR) is proved to be the terminal-acting enzyme in the plastid MEP pathway which provides isoprenoid precursors for the biosynthesis of ginkgolides. The full-length cDNA encoding HDR, designated as GbHDR (Genbank Accession Number DQ364231), was isolated for the first time from G. biloba by RACE method. GbHDR contained a 1,422-bp open reading frame encoding 474 amino acids. The deduced GbHDR protein, showing high identity to HDRs of other plant species, was predicted to possess a chloroplast transit peptide at the N-terminal and four conserved cysteine residues. Two-dimensional structural analysis showed that GbHDR had a similar secondary structure with HDR from Arabidopsis thaliana. Southern blot analysis indicated that GbHDR belonged to a small gene family. Transcription pattern analysis revealed that GbHDR had high transcription in roots, and low in leaves and stems. The cloning of GbHDR gene will enable us to further understand the role of GbHDR involved in terpene triclatones biosynthetic pathway in G. biloba at molecular level.


Assuntos
Ginkgo biloba/enzimologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Genoma de Planta/genética , Ginkgo biloba/genética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica/genética
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(12): 2456-9, 2007 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-18330284

RESUMO

The present paper introduces an application of near infrared spectroscopy (NIRS) multi-component quantitative analysis by building a kind of recurrent network (Elman) model. Elman prediction model for phenylalanine (Phe), lysine (Lys), tyrosine (Tyr) and cystine (Cys) in 45 feedstuff samples was established with good veracity. Twelve peak value data from 3 principal components straight forward compressed from the original data by PLS were taken as inputs of Elman, while 4 predictive targets as outputs. Forty seven nerve cells were taken as hidden nodes with the lowest error compared with taking 43 and 45 nerve cells. Its training iteration times was supposed to be 1000. Predictive correlation coefficients by the model are 0.960, 0.981, 0.979 and 0.952. The results show that Elman using in NIRS is a rapid, effective means for measuring Phe, Lys, Tyr and Cys in feedstuff powder, and can also be used in quantitative analysis of other samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA