Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005281

RESUMO

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Assuntos
Actinidia , Compostos Orgânicos Voláteis , Cromatografia Líquida de Alta Pressão , Frutas/química , Actinidia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Odorantes/análise , Ésteres/análise , Açúcares/análise
2.
Foods ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835267

RESUMO

Actinidia arguta, known for its distinctive flavor and high nutritional value, has seen an increase in cultivation and variety identification. However, the characterization of its volatile aroma compounds remains limited. This study aimed to understand the flavor quality and key volatile aroma compounds of different A. arguta fruits. We examined 35 A. arguta resource fruits for soluble sugars, titratable acids, and sugar-acid ratios. Their organic acids and volatile aroma compounds were analyzed using high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The study found that among the 35 samples tested, S12 had a higher sugar-acid ratio due to its higher sugar content despite having a high titratable acid content, making its fruit flavor superior to other sources. The A. arguta resource fruits can be classified into two types: those dominated by citric acid and those dominated by quinic acid. The analysis identified a total of 76 volatile aroma substances in 35 A. arguta resource fruits. These included 18 esters, 14 alcohols, 16 ketones, 12 aldehydes, seven terpenes, three pyrazines, two furans, two acids, and two other compounds. Aldehydes had the highest relative content of total volatile compounds. Using the orthogonal partial least squares discriminant method (OPLS-DA) analysis, with the 76 volatile aroma substances as dependent variables and different soft date kiwifruit resources as independent variables, 33 volatile aroma substances with variable importance in projection (VIP) greater than 1 were identified as the main aroma substances of A. arguta resource fruits. The volatile aroma compounds with VIP values greater than 1 were analyzed for odor activity value (OAV). The OAV values of isoamyl acetate, 3-methyl-1-butanol, 1-hexanol, and butanal were significantly higher than those of the other compounds. This suggests that these four volatile compounds contribute more to the overall aroma of A. arguta. This study is significant for understanding the differences between the fruit aromas of different A. arguta resources and for scientifically recognizing the characteristic compounds of the fruit aromas of different A. arguta resources.

3.
Foods ; 11(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140895

RESUMO

During this study, the physicochemical properties, color, and volatile aroma compounds of the original wines produced from the grape varieties 'Hassan', 'Zuoshaner', 'Beibinghong', 'Zuoyouhong', 'Beta', 'Shuanghong', 'Zijingganlu', 'Cabernet Sauvignon', and 'Syrah' were determined and sensory evaluation was performed. Results indicated that 'Hassan' contained the most solids, 'Zuoshaner' produced the most total acid, residual sugar, total anthocyanin, and total phenol, and 'Shuanghong' produced the most tannin. Calculation of the chroma and hue of the wines according to the CIEL*a*b* parameters revealed that the 'Cabernet Sauvignon' wines were the brightest of the nine varieties and that the 'Zuoshaner' wines had the greatest red hue and yellow hue and the greatest saturation'. A total of 52 volatile compounds were identified and quantified in nine wine samples by HS-GC-IMS analysis, with the most significant number of species detected being 20 esters, followed by 16 alcohols, 8 aldehydes, four ketones, one terpene, and one furan, with the highest total volatile compound content being 'Beta'. A total of 14 volatile components with OAV (odor activity value) >1 were calculated using the odor activity value (OAV) of the threshold of the aromatic compound, and the OPLS-DA analysis was performed by orthogonal partial least squares discriminant analysis (OPLS-DA) using the OAV values of the compounds with OAV values >1 as the Y variable. The VIP (Variable Importance in Projection) values of six compounds, ethyl isobutyrate, ethyl hexanoate-D, 2-methylpropanal, ethyl octanoate, ethyl butanoate-D, and Isoamyl acetate-D, were calculated to be higher than one between groups, indicating that these six compounds may influence aroma differences. It is essential to recognize that the results of this study have implications for understanding the quality differences between different varieties of wines and for developing wines that have the characteristics of those varieties.

4.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630888

RESUMO

Two-dimensional (2D) nanomaterials have attracted much attention for lubrication enhancement of grease. It is difficult to disperse nanosheets in viscous grease and the lubrication performances of grease under harsh conditions urgently need to be improved. In this study, the 2D talc nanosheets are modified by a silane coupling agent with the assistance of high-energy ball milling, which can stably disperse in grease. The thickness and size of the talc nanosheet are about 20 nm and 2 µm. The silane coupling agent is successfully grafted on the surface of talc. Using the modified-talc nanosheet, the coefficient of friction and wear depth can be reduced by 40% and 66% under high temperature (150 °C) and high load (3.5 GPa), respectively. The enhancement of the lubrication and anti-wear performance is attributed to the boundary adsorbed tribofilm of talc achieving a repairing effect of the friction interfaces, the repairing effect of talc on the friction interfaces. This work provides green, economical guidance for developing natural lubricant additives and has great potential in sustainable lubrication.

5.
Chem Cent J ; 10: 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158260

RESUMO

BACKGROUND: Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Chinese medicinal herb Ardisiapusill A. DC. Previous studies have demonstrated the potent anti-tumor activities of ADS-I both in vitro and in vivo, and its main metabolites (M1 and M2) from human intestinal bacteria. However, the physicochemical properties and intestinal permeation rate of ADS-I and its metabolites are not understood. In this study, the octanol/water distribution coefficients (logP) of ADS-I and metabolites were investigated using standard shake flask technique, and their permeability properties was investigated across Caco-2 cells monolayer. RESULTS: The logP of ADS-I, M1 and M2 was -0.01, 0.95 ± 0.04, 1.57 ± 0.11, respectively. The Papp values of ADS-I, M1 and M2 (in 10 µmol/L) across Caco-2 cell monolayers from the apical (AP) to basolateral (BL) direction were 1.88 ± 0.21 × 10(-6) cm·s(-1), 4.30 ± 0.43 × 10(-6) cm·s(-1), 4.74 ± 0.47 × 10(-6) cm·s(-1), respectively. CONCLUSION: Our data indicated that ADS-I has the poorer intestinal absorption than its metabolites (M1 and M2) in these experimental systems, suggesting that the metabolites of ADS-I may be the predominant products absorbed by the intestine when ADS-I is administered orally.

6.
Molecules ; 20(11): 20569-81, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26610438

RESUMO

Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Ardisia pusilla DC, and has been demonstrated to have potent antitumor activity. However, ADS-I metabolism in humans has not been investigated. In this study, we studied the biotransformation of ADS-I in human intestinal bacteria, and examined the in vitro antitumor activity of the major metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to detect ADS-I biotransformation products, and their chemical structures were identified by high performance liquid chromatography-nuclear magnetic resonance (HPLC-NMR). The antitumor activity of the major metabolites was determined by the MTT assay. Here, we show that main reaction seen in the metabolism of ADS-I in human intestinal bacteria was deglycosylation, which produced a total of four metabolites. The structures of the two major metabolites M1 and M2 were confirmed by using NMR. MTT assay showed that ADS-I metabolites M1 and M2 have the same levels of inhibitory activities as ADS-I in cultured SMMC-7721 cells and MCF-7 cells. In conclusion, this study demonstrates deglycosylation as a primary pathway of ADS-I metabolism in human intestinal bacteria, and suggests that the pharmacological activity of ADS-I may be mediated, at least in part, by its metabolites.


Assuntos
Antineoplásicos/farmacologia , Bactérias/metabolismo , Microbioma Gastrointestinal , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saponinas/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
7.
J Phys Chem B ; 113(25): 8495-504, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19485376

RESUMO

By measurement of the small-angle and wide-angle X-ray scatterings and infrared and Raman spectra and thermal data, microphase separation phenomena have been investigated for a series of polyethylene-poly(ethylene oxide) diblock copolymer (PE-b-PEO) in both the heating and cooling processes and compared with the structural changes occurring inside the PE and PEO domains. The complicated morphological changes between lamella, perforated lamella, gyroid, cylinder, and sphere phases were detected for the copolymer with relatively short PE segments. The orthorhombic crystalline structure of PE was kept unchanged in the lamella-to-gyroid transition. When the PE orthorhombic phase transformed to the pseudohexagonal or rotator phase, the gyroid morphology changed to the cylinder. On the other hand, the diblock copolymer with relatively long PE segment was found to show only the lamellar morphology, in which the order-disorder structural transition between the orthorhombic and pseudohexagonal phases occurred in the PE crystal region. As a possibility, the large difference in morphological change between the copolymers with short and long PE segments has been ascribed to the difference in thermal mobility of PE segments, which is controlled by the conformation of chains and their packing mode, i.e., an extended chain or a folded chain. The extended chains may move thermally and actively along the interfacial boundary in addition to the librational motion around the chain axis, resulting in a variety of morphological changes, whereas the thermal motion of the folded chains may be suppressed because of the geometrical constraint and does not cause such a large-scale morphological change from the lamellar structure. This concept, a thermal activity and geometrical constraint, is considered to be quite important in the interpretation of complicated morphological changes observed for many crystalline-amorphous and crystalline-crystalline diblock copolymers when viewed from the molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA