Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 30(5): 421-432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38153596

RESUMO

OBJECTIVE: To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS: Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION: SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão Miocárdica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Apoptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Injeções , Ratos
2.
Artigo em Inglês | MEDLINE | ID: mdl-30800167

RESUMO

Guizhi Gancao Decoction (GGD) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury and arrhythmia. However, the mechanism by which GGD contributes to the amelioration of cardiac injury remains unclear. The aim of this study was to investigate the potential protective role of GGD against myocardial I/R injury and its possible mechanism. Consistent with the effect of the positive drug (Trimetazidine, TMZ), we subsequently validated that GGD could ameliorate myocardial I/R injury as evidenced by histopathological examination and triphenyltetrazolium chloride (TTC) staining. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated that GGD suppressed myocardial apoptosis, which may be related to the upregulation of Bcl-2, PPARα, and PPARγ and downregulation of Bax, caspase-3, and caspase-9. Pretreatment with GGD attenuated the levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and IL-1ß in serum by inhibiting Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. These results indicated that GGD exhibits cardioprotective effects on myocardial I/R injury through inhibition of the TLR4/NF-κB signaling pathway, which led to reduced inflammatory response and the subsequent cardiomyocyte apoptosis.

3.
Biosci Rep ; 36(3)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129290

RESUMO

Micro-inflammation plays an important role in the pathogenesis of spontaneously hypertensive rat (SHR). In the present study, we investigated the therapeutic potential of resveratrol (RSV), a polyphenol with anti-fibrosis activity in hypertensive renal damage model. In SHR renal damage model, RSV treatment blunted the increase in urine albumin excretion, urinary ß2-microglobulin (ß2-MG), attenuated the decrease in creatinine clearance rate (CCR). The glomerular sclerosis index (1.54±0.33 compared with 0.36±0.07) and tubulointerstitial fibrosis (1.57±0.31 compared with 0.19±0.04) were significantly higher in SHRs compared with Wistar Kyoto rats (WKYs), which were significantly lower by RSV treatment. The increases in mesangium accumulation and the expression of renal collagen type I (Col I), fibronectin (Fn), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-ß1 (TGF-ß1) in SHR were also reduced by RSV treatment. Nuclear factor κB (NF-κB) expression was increased in the cytoplasm and nuclei of the SHR kidneys, which was significantly decreased by RSV treatment. Furthermore, the protein level of IκB-α significantly decreased in the kidneys of the SHR when compared with the WKYs. RSV treatment partially restored the decreased IκB-α level. In SHR kidney, increased expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1) were observed. These changes were attenuated by RSV treatment. No changes in blood pressure were detected between SHR group and SHR + RSV group. Taken together, the present study demonstrated that RSV treatment may significantly attenuate renal damage in the SHR model of chronic kidney disease (CKD). The renal protective effect is associated with inhibition of IL-6, ICAM-1 and MCP-1 expression via the regulation of the nuclear translocation of NF-κB, which suggesting that micro-inflammation may be a potential therapeutic target of hypertensive renal damage.


Assuntos
Fibrose/tratamento farmacológico , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Estilbenos/administração & dosagem , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Colágeno Tipo I/genética , Modelos Animais de Doenças , Fibronectinas/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/patologia , Inflamação/genética , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Ratos , Resveratrol , Fator de Crescimento Transformador beta1/genética , Microglobulina beta-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA