Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664830

RESUMO

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Assuntos
Dissulfiram , Neoplasias Pulmonares , Metaloproteinase 2 da Matriz , Nanopartículas , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Dissulfiram/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Reposicionamento de Medicamentos , Ondas Ultrassônicas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
2.
J Ultrasound Med ; 43(6): 1143-1151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469913

RESUMO

OBJECTIVES: This study aimed to explore the interactions between microbubbles and microwave ablation (MWA). METHODS: The study employed custom-made phantoms (in vitro) and white New Zealand rabbits (in vivo). MWA was performed with or without microbubbles in the phantoms (2 × 105 particles mL-1) and rabbit livers (intravenous injection of 0.05 mL/kg SonoVue). During the MWA, K-type thermocouple probes were used to monitor the MWA-induced temperature increase. Contrast-enhanced ultrasound imaging (CEUS) was used to monitor and analyze the microbubbles signal intensity. After MWA, the ablation-zone volumes were evaluated and compared between the groups with and without microbubbles. RESULTS: In both the phantom models and rabbits, microbubbles showed no significant influence on MWA, including the ablation range and MWA-induced temperature increase. In phantoms and rabbit livers filled with microbubbles, MWA caused the formation of a gradually expanding microbubble-defect region over the ablation time. An increase in the temperature caused microbubble destruction. CONCLUSIONS: Microbubbles had no significant influence on MWA. However, MWA induced the destruction of microbubbles in a temperature-dependent manner. Thus, the poor thermotolerance of microbubbles is a non-negligible barrier when using CEUS to monitor the ablation range during MWA in real-time.


Assuntos
Fígado , Microbolhas , Micro-Ondas , Imagens de Fantasmas , Ultrassonografia , Animais , Coelhos , Micro-Ondas/uso terapêutico , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ultrassonografia/métodos , Técnicas de Ablação/métodos , Meios de Contraste , Modelos Animais
3.
Adv Sci (Weinh) ; 11(12): e2309133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225729

RESUMO

The Ilizarov technique has been continuously innovated to utilize tensile stress (TS) for inducing a bone development-like regenerative process, aiming to achieve skeletal elongation and reconstruction. However, it remains uncertain whether this distraction osteogenesis (DO) process induced by TS involves the pivotal coupling of angiogenesis and osteogenesis mediated by type H endothelial cells (THECs). In this study, it is demonstrated that the Ilizarov technique induces the formation of a metaphysis-like architecture composed of THECs, leading to segmental bone regeneration during the DO process. Mechanistically, cell-matrix interactions-mediated activation of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcriptionally upregulates the expression of Notch1 and Delta-like ligand 4, which act as direct positive regulators of THECs phenotype, in bone marrow endothelial cells (BMECs) upon TS stimulation. Simultaneously, the Notch intracellular domain enhances YAP/TAZ activity by transcriptionally upregulating YAP expression and stabilizing TAZ protein, thus establishing the YAP/TAZ-Notch circuit. Additionally, TS-stimulated BMECs secrete exosomes enriched with vital molecules in this positive feedback pathway, which can be utilized to promote segmental bone defect healing, mimicking the therapeutic effects of Ilizarov technique. The findings advance the understanding of TS-induced segmental bone regeneration and establish the foundation for innovative biological therapeutic strategies aimed at activating THECs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Exossomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Transdução de Sinais , Transativadores/metabolismo , Proteínas de Sinalização YAP , Células Endoteliais/metabolismo , Exossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Regeneração Óssea
4.
Adv Sci (Weinh) ; 11(12): e2307388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233202

RESUMO

Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.


Assuntos
Ferroptose , Osteoporose Pós-Menopausa , Camundongos , Humanos , Animais , Feminino , Osteócitos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estrogênios/metabolismo , Ferro/metabolismo
5.
Med Biol Eng Comput ; 62(4): 1089-1104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148413

RESUMO

Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.


Assuntos
Pescoço , Medula Espinal , Análise de Elementos Finitos , Vértebras Cervicais , Osteogênese
6.
Med Eng Phys ; 121: 104062, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37985028

RESUMO

Ossification of the ligamentum flavum (OLF) is thought to be an influential etiology of myelopathy, as thickened ligamentum flavum causes the stenosis of the vertebral canal, which could subsequently compress the spinal cord. Unfortunately, there was little information available on the effects of cervical OLF on spinal cord compression, such as the relationship between the progression of cervical OLF and nervous system symptoms during dynamic cervical spine activities. In this research, a finite element model of C1-C7 including the spinal cord featured by dynamic fluid-structure interaction was reconstructed and utilized to analyze how different types of cervical OLF affect principal strain and stress distribution in spinal cord during spinal activities towards six directions. For patients with cervical OLF, cervical extension induces higher stress within the spinal cord among all directions. From the perspective of biomechanics, extension leads to stress concentration in the lateral corticospinal tracts or the posterior of gray matter. Low energy damage to the spinal cord would be caused by the high and fluctuating stresses during cervical movements to the affected side for patients with unilateral OLF at lower grades.


Assuntos
Ligamento Amarelo , Ossificação Heterotópica , Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Osteogênese , Doenças da Medula Espinal/complicações , Compressão da Medula Espinal/etiologia , Ossificação Heterotópica/complicações , Vértebras Torácicas
7.
Analyst ; 148(23): 5963-5971, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37867382

RESUMO

Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.


Assuntos
Pesquisa Biomédica , MicroRNAs , Neoplasias , Humanos , Corantes Fluorescentes , Reprodutibilidade dos Testes , MicroRNAs/genética , Neoplasias/diagnóstico por imagem
8.
J Biomech Eng ; 145(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578172

RESUMO

Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid-structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.


Assuntos
Ossificação do Ligamento Longitudinal Posterior , Doenças da Medula Espinal , Humanos , Ligamentos Longitudinais/fisiologia , Análise de Elementos Finitos , Osteogênese , Doenças da Medula Espinal/etiologia , Ossificação do Ligamento Longitudinal Posterior/complicações , Vértebras Cervicais
9.
J Hazard Mater ; 458: 131875, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343409

RESUMO

Simultaneous detection of live and dead bacteria is a huge challenge for food safety. To solve this issue, an all-in-one biosensor for bacteria was developed using the phage-apoferritin@CuO2 (phage-Apo@CP) probe on an antimicrobial peptide (AMP)/MXenes-modified detection platform. With the specific recognition of AMP and phage-Apo@CP, the biosensor for the target Escherichia coli O157:H7 (E. coli O157:H7) presented multi-mode (bioluminescent, colorimetric, and electrochemical) signals to simultaneously measure live and dead bacteria. The bioluminescent signal caused by the adenosine triphosphate (ATP) from the bacteria was used to quantify live bacteria. The colorimetric and voltammetric signals triggered by ·OH and Cu2+ from the probe with the assistance of acid could rapidly screen and quantitative determination of total E. coli O157:H7 concentration. Thus, the dead one was obtained according to the total and live ones. All three signals could be mutually corrected to improve the accuracy. The biosensor was successfully used for on-site measurement of live and dead E. coli O157:H7 in food samples with the limit of detection of 30 CFU/mL for live ones and 6 CFU/mL for total bacteria within 50 min. This work presents a novel pathway for rapid and simultaneous quantification of both live and dead bacteria.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Escherichia coli O157 , Microbiologia de Alimentos , Apoferritinas
10.
Bioorg Chem ; 137: 106582, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156134

RESUMO

Presently, chemotherapy remains to be one of the most important therapeutic approaches for malignant tumors. Ligands based drug conjugates are showing considerable promise as potential therapeutic agents delivery systems for cancer. Here, a series of HSP90 inhibitors-SN38 conjugates were developed through cleavable linkers for tumor-specific delivery of SN38 and reducing its side effects. In vitro assays showed that these conjugates exhibited acceptable stability in PBS and plasma, appreciable HSP90 binding affinity, and potent cytotoxic abilities. Cellular uptake behaviors also indicated that these conjugates could selectively target cancer cells in a time-dependent manner via HSP90. Among them, compound 10b with a glycine linkage exhibits appreciable in vitro and in vivo pharmacokinetic profiles, and excellent in vivo antitumor activity in Capan-1 xenograft models, demonstrating the selective targeting and accumulation of the active payload at tumor sites. Above all, these results suggest that compound 10b has the potential as a potent anticancer drug, meriting further evaluation in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
11.
Front Bioeng Biotechnol ; 11: 1173381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139047

RESUMO

Immune checkpoint blockade (ICB) typified by anti-PD-1/PD-L1 antibodies as a revolutionary treatment for solid malignancies has been limited to a subset of patients due to poor immunogenicity and inadequate T cell infiltration. Unfortunately, no effective strategies combined with ICB therapy are available to overcome low therapeutic efficiency and severe side effects. Ultrasound-targeted microbubble destruction (UTMD) is an effective and safe technique holding the promise to decrease tumor blood perfusion and activate anti-tumor immune response based on the cavitation effect. Herein, we demonstrated a novel combinatorial therapeutic modality combining low-intensity focused ultrasound-targeted microbubble destruction (LIFU-TMD) with PD-L1 blockade. LIFU-TMD caused the rupture of abnormal blood vessels to deplete tumor blood perfusion and induced the tumor microenvironment (TME) transformation to sensitize anti-PD-L1 immunotherapy, which markedly inhibited 4T1 breast cancer's growth in mice. We discovered immunogenic cell death (ICD) in a portion of cells induced by the cavitation effect from LIFU-TMD, characterized by the increased expression of calreticulin (CRT) on the tumor cell surface. Additionally, flow cytometry revealed substantially higher levels of dendritic cells (DCs) and CD8+ T cells in draining lymph nodes and tumor tissue, as induced by pro-inflammatory molecules like IL-12 and TNF-α. These suggest that LIFU-TMD as a simple, effective, and safe treatment option provides a clinically translatable strategy for enhancing ICB therapy.

12.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650023

RESUMO

BACKGROUND: High-intensity focused ultrasound (HIFU) has shown considerable promise in treating solid tumors, but its ultrasonic energy is easily attenuated, resulting in insufficient energy accumulation in the target area. Moreover, HIFU ablation alone may inevitably lead to the presence of residual tumors, which may cause tumor recurrence and metastasis. Here, we describe a synergistic regimen combining HIFU facilitation with immunomodulation based on a novel oxygen-carrying biomimetic perfluorocarbon nanoparticle (M@P-SOP) to stimulate immunogenic cell death in tumor cells while alleviating immune suppression tumor microenvironment. METHODS: M@P-SOP was prepared by double emulsion and film extrusion method. The anticancer and antimetastatic effects of M@P-SOP were evaluated on a preclinical transplanted 4T1 tumor model by combining HIFU and immunotherapy. Flow cytometry and immunofluorescence were used to clarify the potential mechanism of HIFU+M@P-SOP and their role in anti-programmed death ligand-1 (PD-L1) therapy. RESULTS: Guided by photoacoustic/MR/ultrasound (US) multimodal imaging, M@P-SOP was abundantly enriched in tumor, which greatly enhanced HIFU's killing of tumor tissue in situ, induced stronger tumor immunogenic cell death, stimulated dendritic cell maturation and activated CD8+ T cells. At the same time, M@P-SOP released oxygen to alleviate the tumor hypoxic environment, repolarizing the protumor M2-type macrophages into antitumor M1-type. With concurrent anti-PD-L1 treatment, the antitumor immune response was further amplified to the whole body, and the growth of mimic distant tumor was effectively suppressed. CONCLUSIONS: Our findings offer a highly promising HIFU synergist for effectively ameliorating acoustic and hypoxia environment, eventually inhibiting tumor growth and metastasis by stimulating host's antitumor immunity under HIFU ablation, especially in synergizing with PD-L1 antibody immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Tratamento por Ondas de Choque Extracorpóreas , Recidiva Local de Neoplasia , Neoplasias , Humanos , Imagem Multimodal , Recidiva Local de Neoplasia/terapia , Oxigênio , Microambiente Tumoral , Ultrassonografia , Neoplasias/terapia
13.
Theranostics ; 13(1): 148-160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593962

RESUMO

Background: Even though PD-1/PD-L1 is an identified key "don't find me" signal to active adaptive immune system for cancer treatment, the overall response rate (ORR) for all cancer patients is still limited. Other effective therapeutic modalities to bridge the innate and adaptive immunity to improve ORR are urgently needed. Recently, CD47/SIRPα interaction is confirmed as a critical "don't eat me" signal to active innate immunity. However, the red blood cell (RBC) toxicity is the big concern for the development of CD47-based anti-cancer therapeutics. Methods: Here, we report the development of a CD47/PD-L1 bispecific antibody 6MW3211 to block both PD-1/PD-L1 and CD47/SIRPα signals, and studied the effects of 6MW3211 on anti-tumor immune functions in vitro and in vivo. The pharmacokinetic and toxicity profiles of 6MW3211 were evaluated in GLP non-human primate (NHP) studies. Results: The dual immune checkpoint inhibitory signaling blocker 6MW3211 shows high binding affinity to PD-L1 and low binding affinity to CD47. This inequivalent binding affinity design makes 6MW3211 preferentially bound to PD-L1 on tumor cells followed by disrupting the interaction of CD47/SIRPα. Complex structure determination and flow cytometry assay demonstrated that 6MW3211 has no binding to either human or rhesus monkey RBCs. 6MW3211 effectively blocked both PD-1/DP-L1 and CD47/SIRPα signaling and promoted macrophage phagocytosis of tumor cells. Potent therapeutic efficacies of 6MW3211 in three different mouse models were further observed. Moreover, 6MW3211 was demonstrated to have a fairly good safety profile in a GLP NHP study. In addition, multiplex fluorescent immunohistochemistry (mIHC) staining shows that PD-L1 and CD47 co-express on several different types of human tumor tissues. Conclusions: These results support the development of 6MW3211 for the treatment of PD-L1 and CD47 double positive cancers.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Camundongos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno CD47/metabolismo , Antígeno B7-H1 , Receptor de Morte Celular Programada 1/uso terapêutico , Fagocitose , Neoplasias/patologia , Imunoterapia/métodos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico
14.
ACS Appl Mater Interfaces ; 15(1): 1784-1797, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580421

RESUMO

Photothermal therapy (PTT), by converting light to thermal energy, has become a novel and noninvasive technique for tumor thermal ablation in clinical practice. However, as a result of phagocytosis of reticuloendothelial cells, current photothermal agents (PTAs) derived from exogenous materials suffer from incompetent tumor targeting and brief internal circulation time. The resulting poor accumulation of PTAs in the target area severely reduces the efficacy of PTT. In addition, the potential toxicity of PTAs, excessive laser exposure, and possibilities of tumor recurrence and metastasis following PTT are still intractable problems that severely influence patients' quality of life. Herein, a biomimetic pH-responsive nanoprobe was prepared via cancer cell membrane coating polydopamine (PDA)-CaCO3 nanoparticles (CPCaNPs) for photoacoustic (PA)/ultrasonic (US)/thermal imaging-guided PTT. When CPCaNPs targeted and infiltrated into the tumor's acidic microenvironment, the decomposed CO2 bubbles from homologous targeting CPCaNPs enhanced ultrasonic (US) signals obviously. At the same time, the PDA of CPCaNPs not only performed efficient PTT of primary tumors but also generated photoacoustic (PA) signals. In addition, an immune checkpoint pathway blockade was combined, which inhibited tumor recurrence and metastasis significantly and improved the immunosuppressive microenvironment after PTT to a large extent. Thus, these proposed biomimetic pH-responsive CPCaNPs provide a promising strategy for precise PTT immunotherapy under the intelligent guidance of PA/US/thermal imaging and show great potential for clinical translation.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Linhagem Celular Tumoral , Biomimética , Recidiva Local de Neoplasia , Qualidade de Vida , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Imagem Multimodal , Imunoterapia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
15.
Orthop Surg ; 14(12): 3417-3422, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36254364

RESUMO

OBJECTIVE: The outcome of congenital clubfoot treatment is still challenging if the feet deformities are not completely corrected. Here we explore a minimal invasive procedure with an eight-plate implant to correct the residual forefoot adduction deformity after treatment of neglected or relapsed clubfoot. METHODS: We retrospectively reviewed patients with residual forefoot adduction deformity after clubfoot treatment between January 2013 and June 2016. The patients underwent temporary epiphysiodesis of the lateral column of the mid-foot, which in detail, an eight-plate was placed on each side of the calcaneocuboid joint. The foot deformities were recorded according to the weight-bearing radiographic measurements including talo-first metatarsal angle, calcaneo-fifth metatarsal angle and medial-to-lateral column length. RESULTS: A total of 13 patients (20 feet) with an average age of 7.8 years old were located with an average duration of 40.8 months follow-up (range, 28 to 54 months). The average talo-first metatarsal angle improved from 28.3° (range, 19° to 47°) preoperatively to 8.3° (range, 3° to 18°) and the calcaneo-fifth metatarsal angle improved from 29.1° (range, 19° to 40°) preoperatively to 8.4° (range, 0° to 21°) at final follow-up. The mean ratio of the medial-to-lateral column length improved from 1.14 ± 0.06 to 1.55 ± 0.09 with statistical significance (t = 3.566; P < 0.001). CONCLUSIONS: Eight-plate epiphysiodesis is an easy and effective method for the correction of residual forefoot adduction deformity after clubfoot treatment in growing children without the need of osteotomy.


Assuntos
Pé Torto Equinovaro , Criança , Humanos , Estudos Retrospectivos , Pé Torto Equinovaro/cirurgia
16.
Biology (Basel) ; 11(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-36101408

RESUMO

Morchella is a kind of precious edible, medicinal fungi with a series of important effects, including anti-tumor and anti-oxidation effects. Based on the data of 18 environmental variables and the distribution sites of wild Morchella species, this study used a maximum entropy (MaxEnt) model to predict the changes in the geographic distribution of Morchella species in different historical periods (the Last Glacial Maximum (LGM), Mid Holocene (MH), current, 2050s and 2070s). The results revealed that the area under the curve (AUC) values of the receiver operating characteristic curves of different periods were all relatively high (>0.83), indicating that the results of the maximum entropy model are good. Species distribution modeling showed that the major factors influencing the geographical distribution of Morchella species were the precipitation of the driest quarter (Bio17), elevation, the mean temperature of the coldest quarter (Bio11) and the annual mean temperature (Bio1). The simulation of geographic distribution suggested that the current suitable habitat of Morchella was mainly located in Yunnan, Sichuan, Gansu, Shaanxi, Xinjiang Uygur Autonomous Region (XUAR) and other provinces in China. Compared with current times, the suitable area in Northwest and Northeast China decreased in the LGM and MH periods. As for the future periods, the suitable habitats all increased under the different scenarios compared with those in contemporary times, showing a trend of expansion to Northeast and Northwest China. These results could provide a theoretical basis for the protection, rational exploitation and utilization of wild Morchella resources under scenarios of climate change.

17.
Ultrasound Med Biol ; 48(8): 1361-1372, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623921

RESUMO

In recent years, thermal ablation has played an increasingly important role in treating various tumors in the clinic. A practical thermochromic phantom model can provide a favorable platform for clinical thermotherapy training of young physicians or calibration and optimization of thermal devices without risk to animals or human participants. To date, many tissue-mimicking thermal phantoms have been developed and are well liked, especially the polyacrylamide gel (PAG)-based phantoms. This review summarizes the PAG-based phantoms in the field of thermotherapy, details their advantages and disadvantages and provides a direction for further optimization. The relevant physical parameters (such as electrical, acoustic, and thermal properties) of these phantoms are also presented in this review, which can assist operators in a deeper understanding of these phantoms and selection of the proper recipes for phantom fabrication.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia Induzida , Acústica , Resinas Acrílicas , Animais , Humanos , Imagens de Fantasmas
18.
Cell Death Discov ; 8(1): 201, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422066

RESUMO

Cervical squamous cell carcinoma (CSCC) is a type of female cancer that affects millions of families worldwide. Human papillomavirus (HPV) infection is the main reason for CSCC formation, and squamous intraepithelial lesions (SILs) induced by high-risk HPV (HR-HPV) infection are considered precancerous lesions. A previous study reported that HPV-infected cancer cells were able to counteract lipid peroxidation for survival. Recent research has reported that ferroptosis acts in an iron-dependent lipid peroxidation manner to kill cancer cells, and it is proposed as a new approach for female cancer therapy. Here, we investigated the role of ferroptosis throughout SIL development into CSCC. We found that ferroptosis occurred in SIL, but anti-ferroptosis emerged in CSCC. Our data further indicated that an antiferroptotic effect was formed in response to persistent ferroptosis and then promoted oncogenesis. Altogether, we provide novel insight into ferroptosis in cervical SIL development and suggest a potential therapeutic target for the treatment of CSCC.

19.
World J Stem Cells ; 14(1): 41-53, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35126827

RESUMO

The transforming growth factor (TGF)-ß signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-ß signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-ß/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-ß/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.

20.
Cancer Biomark ; 32(2): 237-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092621

RESUMO

Over the past decade, cancer immunotherapy, such as immune checkpoint inhibitors (ICRs), has attained considerable progresses in clinical practice. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) act as next ICRs, and originally function as a co-inhibitory receptor expressed on interferon (IFN)-γ producing CD4+ and CD8+ T-cells. Furthermore, Tim-3 has also been found to express on innate immune cells and several types of tumors, signifying the pivotal role that Tim-3 plays in chronic viral infections and cancer. In addition, Tim-3 and multiple ICRs are concurrently expressed and regulated on dysfunctional or exhausted T-cells, leading to improved antitumor immune responses in preclinical or clinical cancer therapy through co-blockade of Tim-3 and other ICRs such as programmed cell death-1 (PD-1). In this review, the biological characteristics of Tim-3 and the function of Tim-3 in regulating tumorigenesis and inflammation have been summarized. The usage of a single blockade of Tim-3 or in combination with multiple immunotherapy regimens have drawn attention to antitumor potential as a target for immunotherapy.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Evasão Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA